Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Slides:



Advertisements
Similar presentations
BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.
Advertisements

How Much Information Is In Entangled Quantum States? Scott Aaronson MIT |
The Learnability of Quantum States Scott Aaronson University of Waterloo.
Are Quantum States Exponentially Long Vectors? Scott Aaronson (who did and will have an affiliation) (did: IASwill: Waterloo) Distributions over n-bit.
Quantum Versus Classical Proofs and Advice Scott Aaronson Waterloo MIT Greg Kuperberg UC Davis | x {0,1} n ?
Quantum Software Copy-Protection Scott Aaronson (MIT) |
Multilinear Formulas and Skepticism of Quantum Computing Scott Aaronson UC Berkeley IAS.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
How Much Information Is In A Quantum State? Scott Aaronson MIT |
Quantum Double Feature Scott Aaronson (MIT) The Learnability of Quantum States Quantum Software Copy-Protection.
An Invitation to Quantum Complexity Theory The Study of What We Cant Do With Computers We Dont Have Scott Aaronson (MIT) QIP08, New Delhi BQP NP- complete.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
Pretty-Good Tomography Scott Aaronson MIT. Theres a problem… To do tomography on an entangled state of n qubits, we need exp(n) measurements Does this.
How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems.
Scott Aaronson Institut pour l'Étude Avançée Le Principe de la Postselection.
QMA/qpoly PSPACE/poly: De-Merlinizing Quantum Protocols Scott Aaronson University of Waterloo.
Oracles Are Subtle But Not Malicious Scott Aaronson University of Waterloo.
The Equivalence of Sampling and Searching Scott Aaronson MIT.
The Computational Complexity of Linear Optics Scott Aaronson and Alex Arkhipov MIT vs.
Scott Aaronson (MIT) BQP and PH A tale of two strong-willed complexity classes… A 16-year-old quest to find an oracle that separates them… A solution at.
Quantum Computing with Noninteracting Bosons
From EPR to BQP Quantum Computing as 21 st -Century Bell Inequality Violation Scott Aaronson (MIT)
New Computational Insights from Quantum Optics Scott Aaronson.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson (MIT) Joint work with Alex Arkhipov.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.
The Computational Complexity of Linear Optics Scott Aaronson (MIT) Joint work with Alex Arkhipov vs.
New Computational Insights from Quantum Optics Scott Aaronson Based on joint work with Alex Arkhipov.
University of Queensland
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Space complexity [AB 4]. 2 Input/Work/Output TM Output.
One time-travelling bit is as good as logarithmically many
Scott Aaronson (MIT) Forrelation A problem admitting enormous quantum speedup, which I and others have studied under various names over the years, which.
Department of Computer Science & Engineering University of Washington
Interactive Proofs For Quantum Computations Dorit Aharonov, Michael Ben-Or, Elad Eban School of Computer Science and Engineering The Hebrew University.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Quantum Computing MAS 725 Hartmut Klauck NTU
Scott Aaronson (MIT) ThinkQ conference, IBM, Dec. 2, 2015 The Largest Possible Quantum Speedups H H H H H H f |0  g H H H.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Quantum Computing MAS 725 Hartmut Klauck NTU
Verification of BosonSampling Devices Scott Aaronson (MIT) Talk at Simons Institute, February 28, 2014.
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
Scott Aaronson (MIT  UT Austin) Aspen Center for Physics, March 25, 2016 Joint work with Lijie Chen Complexity-Theoretic Foundations of Quantum Supremacy.
Scott Aaronson (MIT  UT Austin) Strachey Lecture, Oxford University May 24, 2016 Quantum Supremacy.
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson (MIT) Papers & slides at
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson (MIT  UT Austin) NYSC, West Virginia, June 24, 2016.
Scott Aaronson (UT Austin) Banff, September 8, 2016 Joint work with Lijie Chen Complexity-Theoretic Foundations of Quantum Supremacy Experiments QSamp.
Scott Aaronson (MIT) April 30, 2014
Scott Aaronson (UT Austin)
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Scott Aaronson (UT Austin)
Scott Aaronson (MITUT Austin)
Bio Scott Aaronson is David J. Bruton Centennial Professor of Computer Science at the University of Texas at Austin.  He received his bachelor's from Cornell.
Quantum Supremacy and its Applications
Three Questions About Quantum Computing
Scott Aaronson (MIT) Talk at SITP, February 21, 2014
Based on joint work with Alex Arkhipov
Certified Randomness from Quantum Supremacy Inimitability
Scott Aaronson (UT Austin)
Three Questions About Quantum Computing
BosonSampling Scott Aaronson (University of Texas, Austin)
Quantum Supremacy and its Applications (!)
Quantum Computing and the Quest for Quantum Computational Supremacy
Quantum Supremacy and its Applications (!)
Quantum Supremacy and its Applications Inimitability
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Scott Aaronson (UT Austin) Papers and slides at
Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity Lijie Chen Ryan Williams.
Presentation transcript:

Complexity-Theoretic Foundations of Quantum Supremacy Experiments QSamp Samp Scott Aaronson (UT Austin) Weizmann Institute, January 25, 2018 Based on joint work with Lijie Chen (Conference on Computational Complexity 2017 - arXiv:1612.05903) Papers and slides at www.scottaaronson.com

QUANTUM SUPREMACY |  #1 Application of quantum computing: Disprove the skeptics! (And the Extended Church-Turing Thesis) Forget for now about applications. Just concentrate on certainty of a quantum speedup over the best classical algorithm for some task

? Why Now? PostBQP PostBPP Google and IBM are currently in a race to build and demonstrate ~50-qubit superconducting QC chips 22-qubit chips demonstrated in the last year ~50-qubit chips already fabricated, but calibrating, testing, etc. could take another year ? Coherence times should be tens of microseconds, allowing a few dozen layers of gates Probably won’t be enough to do anything useful, but maybe just enough to do something classically hard! PostBQP: where we allow postselection on exponentially-unlikely measurement outcomes PostBPP: Classical randomized subclass Theorem (A. 2004): PostBQP = PP PostBPP is in the polynomial hierarchy PostBQP PostBPP

The Sampling Approach Put forward by A The Sampling Approach Put forward by A.-Arkhipov 2011 (BosonSampling), Bremner-Jozsa-Shepherd 2011 (IQP Model), and others Consider problems where the goal is to sample from a desired distribution over n-bit strings Compared to problems with a single valid output (like Factoring), sampling problems can be Easier to solve with near-future quantum devices, and Easier to argue are hard for classical computers! (We “merely” give up on: practical applications, fast classical way to verify the result) PostBQP: where we allow postselection on exponentially-unlikely measurement outcomes PostBPP: Classical randomized subclass Theorem (A. 2004): PostBQP = PP PostBPP is in the polynomial hierarchy PostBQP PostBPP

Complexity and QM in One Slide P#P Oracle for Counting Problems State: Hope for an exponential speedup comes from “the magic of minus signs” Unitary transformations, e.g. PH Constant Number of NP Quantifiers H NP Efficiently Checkable Problems Measurement: BQP Bounded-Error Quantum Polynomial Time P(=BPP?) Efficiently Solvable Problems

Simple Example: Fourier Sampling H f |0 Using the #P-hardness, one can show that if the quantum computer’s output distribution could be exactly sampled in classical polynomial time, then P#P=BPPNP and hence the polynomial hierarchy would collapse to the third level Given a Boolean function the above circuit samples each z{0,1}n with probability #P-hard to approximate, even for z=0…0

The Random Quantum Circuit Proposal Generate a quantum circuit C on n qubits in a nn lattice, with d layers of random nearest-neighbor gates Apply C to |0n and measure. Repeat T times, to obtain samples x1,…,xT from {0,1}n Apply a statistical test to x1,…,xT : check whether at least 2/3 of them have more the median probability (takes classical exponential time, which is OK for n40) Publish C. Challenge skeptics to generate samples passing the test in a reasonable amount of time

Our Strong Hardness Assumption There’s no polynomial-time classical algorithm A such that, given a uniformly-random quantum circuit C with n qubits and m>>n gates, Note: There is a polynomial-time classical algorithm that guesses with probability (just expand 0|nC|0n out as a sum of 4m terms, then sample a few random ones)

Theorem: Assume SHA. Then given as input a random quantum circuit C, with n qubits and m>>n gates, there’s no polynomial-time classical algorithm that even passes our statistical test for C-sampling w.h.p. Proof Sketch: Given a circuit C, first “hide” which amplitude we care about by applying a random XOR-mask to the outputs, producing a C’ such that Now let A be a poly-time classical algorithm that passes the test for C’ with probability 0.99. Suppose A outputs samples x1,…,xT. Then if xi =z for some i[T], guess that Violates SHA! Otherwise, guess that with probability

Time-Space Tradeoffs for Simulating Quantum Circuits Given a general quantum circuit with n qubits and m>>n two-qubit gates, how should we simulate it classically? “Schrödinger way”: Store whole wavefunction O(2n) memory, O(m2n) time n=40, m=1000: Feasible but requires TB of RAM “Feynman way”: Sum over paths O(m+n) memory, O(4m) time n=40, m=1000: Infeasible but requires little RAM Best of both worlds?

Theorem: Let C be a quantum circuit with n qubits and d layers of gates. Then we can compute each transition amplitude, x|C|y, in dO(n) time and poly(n,d) memory C1 C2 Proof: Savitch’s Theorem! Recursively divide C into two chunks, C1 and C2, with d/2 layers each. Then Can do better for nearest-neighbor circuits, or when more memory is available This algorithm still doesn’t falsify the SHA! Why not?

What About Errors? k bit-flip errors  deviation from the uniform distribution is suppressed by a 1/exp(k) factor. Without error-correction, can only tolerate a few errors. Will come down to numbers. Verification Last month, Pednault et al. from IBM put out a preprint demonstrating the use of our recursive approach to simulate 50 qubits on a classical computing cluster. Many commentators said this undercut the rationale for planned quantum supremacy experiments. Truth is more like the opposite!

Other Things We Showed Any strong quantum supremacy theorem (“fast approximate classical sampling of this experiment would collapse the polynomial hierarchy”) will require non-relativizing techniques (meaning: it doesn’t hold in black-box generality; there’s an oracle that makes it false) If any one-way functions exist, then quantum supremacy is possible with an efficiently computable black box Conversely, even if you just want to prove quantum supremacy relative to an efficiently computable black box, you need to assume something is hard in the ordinary, non-black-box world

Summary In the near future, we’ll likely be able to perform random quantum circuit sampling with ~50 qubits Central question: how do we verify that something classically hard was done? Quantum computing theorists would be urgently called upon to think about this, even if there were nothing theoretically interesting to say. But there is!