Preview Warm Up California Standards Lesson Presentation.

Slides:



Advertisements
Similar presentations
Preview Warm Up California Standards Lesson Presentation.
Advertisements

HW # 70 - p. 306 & 307 # 6-18 even AND Warm up Simplify
Warm Up 1. What is 35 increased by 8%? 37.8 Course More Applications of Percents.
Pre-Algebra 8-7 More Applications of Percents Warm-up Pink handout #11-14 Turn in pink handout.
Notes 31 Simple Interest 6-6.
More Applications of Percents
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Introducing the Mathematics of Finance
Over Lesson 7–6 A.A B.B C.C D.D 5-Minute Check 4 A.10.7% increase B.10.6% increase C.10.5% increase D.10.2% increase Myra bought a new car. Her monthly.
Applications of Percents
2. What is the percent of decrease from 144 to 120?
Pre-Algebra HOMEWORK Page 427 #16-19 & Spiral Review (#20-24) ANSWERS.
Pre-Algebra 8.6 and 8.7 Applications of Percents.
Lesson 7.8: Simple Interest
California Standards NS1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips. Also.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
6-7 Simple Interest Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Simple Interest.
Using Percents Part 2.
Compound Interest Problems. Lesson Objectives Use the compound interest formula to solve problems Use the compound interest formula to solve problems.
Course More Applications of Percents 6-7 Simple Interest Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson.
PRE-ALGEBRA. Lesson 7-7 Warm-Up PRE-ALGEBRA Simple and Compound Interest (7-7) principal: the amount of money that is invested (put in to earn more)
Simple and Compound Interest Video: Simple/ Compound InterestSimple/ Compound Interest Video: A Penny a DayA Penny a Day.
Pre-Algebra 8-7 More Applications of Percents Learn to compute simple interest.
You deposit $950 into an account that earns 4 % interest compounded annually. Find the balance in the account after five years. In your last calculation,
Lesson Menu Main Idea and New Vocabulary NGSSS Example 1:Find Simple Interest Example 2:Find the Interest Rate Example 3:Find the Total Amount Five-Minute.
Holt CA Course Simple Interest Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Simple and Compound Interest Simple Interest I = Prt Compound Interest A = P(1 + r)
Simple Interest 6-6 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Homework: Part I 1. A bank is offering 2.5% simple interest on a savings account. If you deposit $5000, how much interest will you earn in one year? 2.
5-5 Simple Interest. Video Tutor Help Finding simple interestFinding simple interest (5-5) Simple Interest Khan Academy Simple interest.
Warm Up 1. Write 0.03 as a percent. 2. Write as a decimal.
Holt McDougal Algebra Percent Increase and Decrease Warm Up 1. Find 30% of Find 28% of 60. Solve for x = x(50) = x(86) 5.
Applications of Percents
Exercise Write 5% as a decimal Write 6.5% as a decimal Exercise.
Week 13 Simple Interest. Lesson Objectives After you have completed this lesson, you will be able to: Represent or solve simple interest problems. Solve.
Simple Interest.
Do Now Justin earned 5% on an $1,000 investment. How much did he earn?
Simple and Compound Interest
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
CHAPTER 8 Personal Finance.
VOCABULARY WORD DESCRIPTION Principal Interest Interest Rate
Applications of Percents
Who is very Interested in Compounding
3-8 PRESENT VALUE OF INVESTMENTS
Time Value of Money Math
Lesson 7.7 Simple and Compound Interest
Simple and Compound Interest
Rounding 3 Round to the nearest whole number 3.46
I = PRT I = P x R x T nterest rincipal ate ime Simple Interest
Lesson 8-6 Solve problems involving simple interest.
Rounding 3 Round to the nearest whole number 3.46
Simple Interest Module 5 Lesson 3.
Lesson 7.8: Simple Interest
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
CHAPTER 8 Personal Finance.
HOW TO MAKE MONEY WITHOUT DOING ANY WORK
7-4 Percents and Interest
Main Idea and New Vocabulary Example 1: Find Interest Earned
Splash Screen.
6-6 Simple Interest Warm Up Problem of the Day Lesson Presentation
Problem 1 You deposit $5000 in a savings account that earns 10% simple interest per year and withdraw all your money at the end of the fifth year. But.
Time Value of Money Math
Do Now Justin earned 5% on an $1,000 investment. How much did he earn?
3-5 COMPOUND INTEREST Your money can grow larger and quicker with compound interest than it can with simple interest.
Simple Interest/Commisions
More Applications of Percents
6-7 Simple Interest Warm Up Problem of the Day Lesson Presentation
Simple Interest Task Questions
Presentation transcript:

Preview Warm Up California Standards Lesson Presentation

Warm Up 1. What is 35 increased by 8%? 2 2. What is the percent of decrease from 144 to 120? 3. What is 1500 decreased by 75%? 4. What is the percent of increase from 0.32 to 0.64? 16 % 2 3 37.8 375 100%

NS1.7 Solve problems that involve discounts, markups, commissions, and profit and compute simple and compound interest. California Standards

Vocabulary simple interest principal rate of interest compound interest

When you deposit money into a bank, the bank pays you interest. When you borrow money from a bank, you pay interest to the bank. Simple interest is money paid only on the principal. Rate of interest is the percent charged or earned. I = P  r  t Time that the money is borrowed or invested (in years). Principal is the amount of money borrowed or invested.

Additional Example 1: Finding Interest and Total Payment on a Loan To buy a car, Jessica borrowed $15,000 for 3 years at an annual simple interest rate of 9%. How much interest will she pay if she pays the entire loan off at the end of the third year? What is the total amount that she will repay? First, find the interest she will pay. I = P  r  t Use the formula. I = 15,000  0.09  3 Substitute. Use 0.09 for 9%. I = 4050 Solve for I.

Additional Example 1 Continued Jessica will pay $4050 in interest. You can find the total amount A to be repaid on a loan by adding the principal P to the interest I. P + I = A principal + interest = total amount 15,000 + 4050 = A Substitute. 19,050 = A Solve for A. Jessica will repay a total of $19,050 on her loan.

Check It Out! Example 1 To buy a laptop computer, Elaine borrowed $2,000 for 3 years at an annual simple interest rate of 5%. How much interest will she pay if she pays the entire loan off at the end of the third year? What is the total amount that she will repay? First, find the interest she will pay. I = P  r  t Use the formula. I = 2,000  0.05  3 Substitute. Use 0.05 for 5%. I = 300 Solve for I.

Check It Out! Example 1 Continued Elaine will pay $300 in interest. You can find the total amount A to be repaid on a loan by adding the principal P to the interest I. P + I = A principal + interest = total amount 2000 + 300 = A Substitute. 2300 = A Solve for A. Elaine will repay a total of $2300 on her loan.

Additional Example 2: Determining the Amount of Investment Time Nancy invested $6000 in a bond at a yearly rate of 3%. She earned $450 in interest. How long was the money invested? I = P  r  t Use the formula. 450 = 6000  0.03  t Substitute values into the equation. 450 = 180t 2.5 = t Solve for t. The money was invested for 2.5 years, or 2 years and 6 months.

Check It Out! Example 2 TJ invested $4000 in a bond at a yearly rate of 2%. He earned $200 in interest. How long was the money invested? I = P  r  t Use the formula. 200 = 4000  0.02  t Substitute values into the equation. 200 = 80t 2.5 = t Solve for t. The money was invested for 2.5 years, or 2 years and 6 months.

Additional Example 3: Computing Total Savings John’s parents deposited $1000 into a savings account as a college fund when he was born. How much will John have in this account after 18 years at a yearly simple interest rate of 3.25%? I = P  r  t Use the formula. I = 1000  0.0325  18 Substitute. Use 0.0325 for 3.25%. I = 585 Solve for I. The interest is $585. Now you can find the total.

Additional Example 3 Continued P + I = A Use the formula. 1000 + 585 = A Substitute. 1585 = A Solve for A. John will have $1585 in the account after 18 years.

Check It Out! Example 3 Bertha deposited $1000 into a retirement account when she was 18. How much will Bertha have in this account after 50 years at a yearly simple interest rate of 7.5%? I = P  r  t Use the formula. I = 1000  0.075  50 Substitute. Use 0.075 for 7.5%. I = 3750 Solve for I. The interest is $3750. Now you can find the total.

Check It Out! Example 3 Continued P + I = A Use the formula. 1000 + 3750 = A Substitute. 4750 = A Solve for A. Bertha will have $4750 in the account after 50 years.

Additional Example 4: Finding the Rate of Interest Mr. Johnson borrowed $8000 for 4 years to make home improvements. If he repaid a total of $10,320, at what interest rate did he borrow the money? P + I = A Use the formula. 8000 + I = 10,320 Substitute. I = 10,320 – 8000 = 2320 Subtract 8000 from both sides. He paid $2320 in interest. Use the amount of interest to find the interest rate.

Additional Example 4 Continued I = P  r  t Use the formula. 2320 = 8000  r  4 Substitute. 2320 = 32,000  r Simplify. 2320 32,000 = r Divide both sides by 32,000. 0.0725 = r Mr. Johnson borrowed the money at an annual rate of 7.25%, or 7 %. 1 4

Check It Out! Example 4 Mr. Mogi borrowed $9000 for 10 years to make home improvements. If he repaid a total of $20,000 at what interest rate did he borrow the money? P + I = A Use the formula. 9000 + I = 20,000 Substitute. I = 20,000 – 9000 = 11,000 Subtract 9000 from both sides. He paid $11,000 in interest. Use the amount of interest to find the interest rate.

Check It Out! Example 4 Continued I = P  r  t Use the formula. 11,000 = 9000  r  10 Substitute. 11,000 = 90,000  r Simplify. 11,000 90,000 = r Divide both sides by 90,000. 0.12 = r Mr. Mogi borrowed the money at an annual rate of about 12.2%.

Compound interest is interest paid not only on the principal, but also on the interest that has already been earned. The formula for compound interest is below. A = P(1 + ) r n nt A is the final dollar value, P is the principal, r is the rate of interest, t is the number of years, and n is the number of compounding periods per year.

The table shows some common compounding periods and how many times per year interest is paid for them. Compounding Periods Times per year (n) Annually 1 Semi-annually 2 Quarterly 4 Monthly 12

Additional Example 5: Applying Compound Interest David invested $1800 in a savings account that pays 4.5% interest compounded semi-annually. Find the value of the investment in 12 years. A = P(1 + ) r n nt Use the compound interest formula. = 1800(1 + ) 0.045 t 2 2(12) Substitute. = 1800(1 + 0.0225)24 Simplify. = 1800(1.0225)24 Add inside the parentheses.

Additional Example 5 Continued ≈ 1800(1.70576) Find (1.0225)24 and round. ≈ 3,070.38 Multiply and round to the nearest cent. After 12 years, the investment will be worth about $3,070.38.

Use the compound interest formula. Check It Out! Example 5 Kia invested $3700 in a savings account that pays 2.5% interest compounded quarterly. Find the value of the investment in 10 years. A = P(1 + ) r n nt Use the compound interest formula. = 3700(1 + ) 0.025 t 4 4(10) Substitute. = 3700(1 + 0.00625)40 Simplify. = 3700(1.00625)40 Add inside the parentheses.

Check It Out! Example 5 Continued ≈ 3700(1.28303) Find (1.00625)40 and round. ≈ 4,747.20 Multiply and round to the nearest cent. After 10 years, the investment will be worth about $4,747.20.

Lesson Quiz: Part I 1. A bank is offering 2.5% simple interest on a savings account. If you deposit $5000, how much interest will you earn in one year? 2. Joshua borrowed $1000 from his friend and paid him back $1050 in six months. What simple annual interest did Joshua pay his friend? $125 10%

Lesson Quiz: Part II 3. The Hemmings borrowed $3000 for home improvements. They repaid the loan and $600 in simple interest four years later. What simple annual interest rate did they pay? 4. Theresa invested $800 in a savings account that pays 4% interest compounded quarterly. Find the value of the investment after 6 years. 5% $1015.79