Chapter 8: Potential Energy & Conservation of Energy

Slides:



Advertisements
Similar presentations
Physics 111: Mechanics Lecture 7
Advertisements

Work Done by a Constant Force
For Your Consideration…
The concept of energy (and the conservation of energy – chapter 8) is one of the most important topics in physics. Work Kinetic energy Energy approach.
One form of energy can be converted into another form of energy. Conservation of energy Conservative and non-conservative forces Chapter 8: Potential Energy.
Work, Energy, and Power Samar Hathout KDTH 101. Work is the transfer of energy through motion. In order for work to take place, a force must be exerted.
Chapter 9 Potential Energy & Conservation of Energy
Physics 111 Practice Problem Statements 07 Potential Energy & Energy Conservation SJ 8th Ed.: Chap 7.6 – 7.8, 8.1 – 8.5 Contents: 8-4, 8-5, 8-16, 8-19*,
Work and Energy Chapter 7.
Conservation of Energy Energy is Conserved!. The total energy (in all forms) in a “closed” system remains constant The total energy (in all forms) in.
Physics 151: Lecture 15, Pg 1 Today’s Topics l Potential Energy, Ch. 8-1 l Conservative Forces, Ch. 8-2 l Conservation of mechanical energy Ch.8-4.
Lecture notes by Dr. M. S. Kariapper KFUPM - PHYSICS 5-Nov-061/8 Potential Energy and Conservation of Energy. Conservative and non-conservative forces.
General Physics 1, Additional questions By/ T.A. Eleyan
1a. Positive and negative work
T101Q7. A spring is compressed a distance of h = 9.80 cm from its relaxed position and a 2.00 kg block is put on top of it (Figure 3). What is the maximum.
Example: A 20 kg block is fired horizontally across a frictionless surface. The block strikes a platform that is attached to a spring at its equilibrium.
Chapter 5 Work and Energy
Introduction to Work Monday, September 14, 2015 Work Work tells us how much a force or combination of forces changes the energy of a system. Work is.
Work and Energy © 2014 Pearson Education, Inc..
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Chapter 8: Potential Energy and Conservation of Energy
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Potential Energy and Conservative Forces
Work and Power Chapter 5. Work Work is done when a force causes a displacement in the direction of the force W = Fd (force and displacement parallel)
Chapter 8 - Potential Energy and Conservation of Energy Conservative vs. Non-conservative Forces Definition of Potential Energy Conservation Of Mechanical.
Work and Energy. Work a force that causes a displacement of an object does work on the object W = Fdnewtons times meters (N·m) or joules (J)
Work and Energy Chapter 7 Conservation of Energy Energy is a quantity that can be converted from one form to another but cannot be created or destroyed.
Energy Transformations and Conservation of Mechanical Energy 8
Physics 1D03 - Lecture 22 Potential Energy Work and potential energy Conservative and non-conservative forces Gravitational and elastic potential energy.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
2008 Physics 2111 Fundamentals of Physics Chapter 8 1 Fundamentals of Physics Chapter 8 Potential Energy & Conservation of Energy 1.Potential Energy 2.Path.
Reading Quiz - Work & Energy
Physics 6A Work and Energy examples Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
NAZARIN B. NORDIN What you will learn: Define work, power and energy Potential energy Kinetic energy Work-energy principle Conservation.
One form of energy can be converted into another form of energy. Conservative and non-conservative forces CONSERVATION OF ENERGY Chapter 8: Potential Energy.
A certain pendulum consists of a 2
Conservation of Energy
Chapters 7, 8 Energy. What is energy? Energy - is a fundamental, basic notion in physics Energy is a scalar, describing state of an object or a system.
One form of energy can be converted into another form of energy. Conservation of energy Conservative and non-conservative forces Chapter 8: Potential Energy.
Work and Energy x Work and Energy 06.
Potential Energy and Conservation of Energy
Chapter 8 Potential Enegy. Introduction Potential Energy- Energy associated with the configuration of a system of objects that exert forces on each other.
Wednesday June 15, PHYS , Summer I 2005 Dr. Andrew Brandt PHYS 1443 – Section 001 Lecture #9 Wednesday June 15, 2005 Dr. Andrew Brandt Lightning.
Chapter 5 Work and Energy. Mechanical Energy  Mechanical Energy is the energy that an object has due to its motion or its position.  Two kinds of mechanical.
Ch.5 Energy Energy comes in various forms:. When you apply a Force to an object and it moves a displacement (x), then you get done. i.e.(Weight is now.
WHY DO WE DO WORK? Work transfers energy from one object to another. So, what is energy? –Energy is the ability to do work. Major forms (for our purposes)
Warm up – Do old way A boy pulls a large box with a mass of 50 kg up a frictionless incline (
Kinetic Energy (E K ) Energy an object has due to its motion Potential Energy (E P ) Energy an object has due to its position/location Mechanical Energy.
Wednesday, Oct. 17, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #13 Wednesday, Oct. 17, 2007 Dr. Jaehoon Yu Potential.
PHYS 1443 – Section 001 Lecture #9
Chapter 7: Work and Kinetic Energy-1
1a. Positive and negative work
Chapter 7 Work and Energy
Work, Energy, and Power Samar Hathout KDTH 101.
Work Done by a Constant Force
Conservation of Energy with Springs AP style
Work, Energy, and Power Samar Hathout KDTH 101.
Chapter 5 Work and Energy
Do Now: (Yesterday’s Atwood’s Machine)
Aim: How do we apply conservation of energy to solving problems?
PHYS 1441 – Section 002 Lecture #16
Chapter 7: Work; Energy of a System
PHYS 1443 – Section 001 Lecture #13
Last Time: Work, Kinetic Energy, Work-Energy Theorem Today:
Potential Potential Energy
Aim: How do we explain conservation of energy?
PHYS 1443 – Section 003 Lecture #13
PHYS 1441 – Section 002 Lecture #16
Figure 8.1  The work done by an external agent on the system of the book and the Earth as the book is lifted from a height ya to a height yb is equal to.
Presentation transcript:

Chapter 8: Potential Energy & Conservation of Energy (goes together with Chapter 7) Reading assignment: Ch. 8.1 to 8.5 Homework 8 (due Friday, Oct. 19): QQ4, CQ7, OQ1, OQ2, OQ4, OQ7, AE7, AE8, AE11, 3, 6, 7, 4, 14, 15, 16, 22, 29, 40, 63 (Long - start early!) Remember Homework 7.2 due on Tuesday, Oct. 9 One form of energy can be converted into another form of energy. Conservation of energy Conservative and non-conservative forces

Potential energy U: Can be thought of as stored energy that can either do work or be converted to kinetic energy. When work gets done on an object, its potential and/or kinetic energy increases. There are different types of potential energy: Gravitational energy Elastic potential energy (energy in a stretched spring) Others (magnetic, electric, chemical, …). Won’t deal with those here.

Gravitational potential energy: - Potential energy only depends on y (height) and not on x (lateral distance)

Black board example 8.1 i-clicker Michael Jordan is 1.98 m tall, has a mass of 100 kg, does a vertical leap of 1.00 m and dunks successfully. How much gravitational potential energy has he gained at his highest point? 0 J 49 J 98 J 980 J None of the above

Work done by a spring: xi xf Elastic potential energy stored in a spring: The spring is stretched or compresses from its equilibrium position by x

Review important energy/work formulas: = area under F(x) vs. x curve Forms of energy:

Black board example 8.2 A mass m is bobbing up and down on a spring. Describe the various forms of energy of this system. Notice how one form of energy gets transformed into another form of energy.

Conservative and non-conservative forces Work is independent of the path taken. Work depends only on the final and initial point. Work done is zero if the path is a closed loop (same beginning and ending points.) We can always associate a potential energy with conservative forces. We can only associate a potential energy with conservative forces. Work done by a conservative force: Wc = Ui – Uf = - DU Examples of conservative forces: _____________________________________________

Conservation of mechanical energy If we deal only with conservative forces and If we deal with an isolated system (no energy added or removed): Then, the total mechanical energy, E, of a system remains constant! E… total energy K… Kinetic energy U… potential energy The final and initial energy of a system remain the same: Ei = Ef Thus:

Black board example 8.3 i-clicker Three balls are thrown from the top of a building, all with the same initial speed. (Ignore air resistance). The first is thrown horizontally, the second with some angle above the horizontal and the third with some angle below the horizontal. Describe the motion of the balls. Rank the speed of the balls as they hit the ground. (Hint: use conservation of energy) 1 = 2 = 3 2 < 1 < 3 3 < 1 < 2 1 < 3 < 2

Black board example 8.4 i-clicker A bowling ball of mass m = 1kg is suspended from the ceiling by a cord of length L. The ball is released from rest when the cord makes an angle qA with the vertical. Find the potential gravitational energy of the ball at point A (relative to point B) assuming a cord length L = 4 m and an angle qA = 27.7°. Find the speed of the ball at the lowest point B A) 1 m/s B) 2 m/s C) 3 m/s D) 4 m/s E) 5 m/s The ball swings back. Will it crush the operator’s nose? A) Yes B) No C) Depends on the size of the nose.

Black board example 8.5 A block of mass 0.50 kg is placed on top of a light, vertical spring with k = 1000 N/m and pushed downward so that the spring is compressed by 0.10 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise? Assume there are no frictional losses. h = ?

Conservative and non-conservative forces A force is non-conservative if it causes a change in mechanical energy; mechanical energy is the sum of kinetic and potential energy. Example: Frictional force. This energy cannot be converted back into other forms of energy (irreversible). Work does depend on path. Sliding a book on a table

Work done by non-conservative forces 1. Work done by an applied force. (System is not isolated) An applied force can transfer energy into or out of the system. Example. Applying a force to an object and lifting increases the energy of the object.

Work done by non-conservative forces 2. Situations involving kinetic friction. (Friction is not a conservative force). Kinetic friction is an example of a __________________ force. If an object moves over a surface through a distance d, and it experiences a kinetic frictional force of fk it is loosing kinetic energy Thus, the mechanical energy (E = U + K) of the system is reduced by this amount.

Black board example 8.6 A 10.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m and a frictional coefficient of 0.3. The block travels down the track, and hits a spring of force constant 2500 N/m. How far does the spring get compress as the block comes momentarily to a stop?

Power (review) Power is the rate at which work is done, or energy expended: Average power (work done per time interval Dt): The power can also be expressed as: Dot product The units of power are joule/sec (J/s) = Watt (W) James Watt (1736-1819); Scottish inventor and engineer whose improvements to the steam engine were fundamental to the changes wrought by the Industrial Revolution. (from Wikipedia) (1 horsepower = 746 W)

Black board example 8.7; i-clicker An elite endurance athlete (mass 70 kg) has a power output of 450 W (at the aerobic threshold). At maximum exertion (maximum power output), how long will it take him to climb Pilot Mountain (~330 m vertical elevation); ignore air resistance? ~500 s B) ~600 s C) ~700 s D) ~800 s E) ~900 s (Power output for a good athlete is 200 – 300 W at the aerobic threshold)