STATISTIKA (STRUČNI STUDIJ) Korelacijska analiza Regresijska analiza.

Slides:



Advertisements
Similar presentations
Linear Regression Using Excel 2010 Linear Regression Using Excel ® 2010 Managerial Accounting Prepared by Diane Tanner University of North Florida Chapter.
Advertisements

LINEAR REGRESSION: Evaluating Regression Models. Overview Standard Error of the Estimate Goodness of Fit Coefficient of Determination Regression Coefficients.
1 An example. 2 AirlinePercentage on time Complaints Southwest Continental Northwest US Airways United American
Lesson #32 Simple Linear Regression. Regression is used to model and/or predict a variable; called the dependent variable, Y; based on one or more independent.
Denver Home Sales Daniel Cisneros II Source:
No Intercept Regression and Analysis of Variance.
Multiple Regression Fundamentals Basic Interpretations.
Completing the ANOVA From the Summary Statistics.
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc. Chap 12-1 Correlation and Regression.
Solutions to Tutorial 5 Problems Source Sum of Squares df Mean Square F-test Regression Residual Total ANOVA Table Variable.
ANOVA for Regression ANOVA tests whether the regression model has any explanatory power. In the case of simple regression analysis the ANOVA test and the.
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
Simple Linear Regression In the previous lectures, we only focus on one random variable. In many applications, we often work with a pair of variables.
Linear Discriminant Analysis (LDA). Goal To classify observations into 2 or more groups based on k discriminant functions (Dependent variable Y is categorical.
Environmental Modeling Basic Testing Methods - Statistics III.
PLC Group: Mr. Keefe Mr. Brewer Mr. Skramstad Student Reading Habits and its Impact on CST.
Yvette Garcia, PharmD, BCPS 1 st Year Executive Administration Program.
Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons Business Statistics, 4e by Ken Black Chapter 14 Multiple Regression Analysis.
Houston, Texas FAT CITY, USA Gloria Lobo-Stratton Sharon Lovdahl Dennis Glendenning.
Class 22. Understanding Regression EMBS Part of 12.7 Sections 1-3 and 7 of Pfeifer Regression note.
Real Estate Sales Forecasting Regression Model of Pueblo neighborhood North Elizabeth Data sources from Pueblo County Website.
732G21/732G28/732A35 Lecture 4. Variance-covariance matrix for the regression coefficients 2.
Regression Modeling Applications in Land use and Transport.
Samantha Bellah Adv. Stats Final Project Real Estate Forecasting Regression Model Market: Highland Park Neighborhood Data Sources: Zillow.com E:\PuebloRESales2014Q1Q2.xlsx.
Interaction regression models. What is an additive model? A regression model with p-1 predictor variables contains additive effects if the response function.
REGRESSION REVISITED. PATTERNS IN SCATTER PLOTS OR LINE GRAPHS Pattern Pattern Strength Strength Regression Line Regression Line Linear Linear y = mx.
Multiple Regression.
Chapter 13 Simple Linear Regression
EXCEL: Multiple Regression
Chapter 14 Introduction to Multiple Regression
*Bring Money for Yearbook!
Inference for Least Squares Lines
*Bring Money for Yearbook!
From t-test to multilevel analyses Del-2
Jihye Chun Kyungjin Lee Rick Jantz Yang Song
BUSI 410 Business Analytics
Regression model with multiple predictors
Regresijos determinuotumas
STATISTIKA 2. CIKLUS (STRUČNI STUDIJ) Korelacijska analiza
Relationship with one independent variable
Regression Statistics
Osnove (i još malo više) statistike
Strojno učenje (engl. machine learning)
TẠI SAO PHẢI NGHIÊN CỨU MÔ HÌNH HỒI QUY ĐA BIẾN?
Petlje FOR - NEXT.
Analiza brojčanih podataka, korelacija i regresija
Multiple Regression.
Console Editeur : myProg.R 1
Statistics in WR: Lecture 12
Др Наташа Папић-Благојевић
MessageBox.
KORELACIJSKA I REGRESIJSKA ANALIZA
Analitička statistika Testiranje hipoteze
predavanja v.as.mr. Samir Lemeš
Example 1 5. Use SPSS output ANOVAb Model Sum of Squares df
JEDNOSTAVNA LINEARNA REGRESIJA UTJECAJA VARIJABLI NA GODINE ŽIVOTA
Simple Linear Regression
Strukture podataka i algoritmi 5. VRIJEME IZVRŠAVANJA ALGORITMA
Programski jezik C++ - Vježbe - 5. dio
EN Snow loads Opterećenje od snijega
Relationship with one independent variable
Business Statistics, 4e by Ken Black
By: Samuel Fafinski, Obed Jean-Baptist, Jacob Carrigan
Figure 7.1 Efficient Frontier and Capital Market Line
Example on the Concept of Regression . observation
24/02/11 Tutorial 2 Inferential Statistics, Statistical Modelling & Survey Methods (BS2506) Pairach Piboonrungroj (Champ)
Ponavljanje Pisana provjera
Table 2. Regression statistics for independent and dependent variables
Presentation transcript:

STATISTIKA (STRUČNI STUDIJ) Korelacijska analiza Regresijska analiza

Razlika između korelacije i regresije Korelacijska i regregresijska analiza proučavaju međusobne odnose dvije ili više pojava. Razlika između korelacije i regresije Korelacijska analiza ustanovljava postojanje veze između pojava, njen oblik, jačinu i smjer ne ulazeći u to što je uzrok a što poslijedica. Regresijska analiza utvrđuje analitički oblik veza između zavisne i nezavisnih pojava

(A) Korelacijska analiza Dijagram rasipanja Jakost, smjer i oblik veze među pojavama Pearsonov koeficijent linearne korelacije Spearmanov koeficijent korelacije ranga

PRIMJERI DIJAGRAMA RASIPANJA Ne postoji veza Pozitivna jaka krivolinijska veza Negativna jaka krivolinijska veza Pozitivna linearna veza Funkcionalna veza

PEARSONOV KOEFICIJENT LINEARNE KORELACIJE

Vrijednost koeficijenta korelacije Vrijednost r Jakost veze -1 funkcionalna negativna veza -1 < r < -0,8 jaka negativna veza -0,8 ≤ f < -0,5 srednja negativna veza -0,5 ≤ r < 0 slaba negativna veza veza ne postoji 0 < r ≤ 0,5 slaba pozitivna veza 0,5 < r ≤ 0,8 srednja pozitivna veza 0,8 < r < 1 jaka pozitivna veza 1 funkcionalna pozitivna veza

Primjer 1: Ispitajte postoji li veza među slijedećim varijablama Cijena Ponuda xy x2 y2 x(p) y(q) 5 44 220 25 1936 12 68 816 144 4624 7 60 420 49 3600 10 70 700 100 4900 4 32 128 16 1024 6 36 216 1296 8 62 496 64 3844 84 1008 7056 456 4004 578 28280 Cijena Ponuda x(p) y(q) 5 44 12 68 7 60 10 70 4 32 6 36 8 62 84   Cijena Ponuda xy x(p) y(q) 5 44 220 12 68 816 7 60 420 10 70 700 4 32 128 6 36 216 8 62 496 84 1008 64 456 4004

(B) Regresijska analiza Model jednostavne linearne regresije Ocjenjivanje nepoznatih parametara Mjere disperzije i drugi analitički pokazatelji Ispitivanjekvaliteta dobivenih rezultata (regresijska dijagnostika)

REGRESIJSKA ANALIZA Jednostavna linearna regresija

Nezavisna varijabla X u modelu naziva se regresor, a zavisna Y regresand Značenje parametara “α” – konstantni član i nema praktično značenje. Pokazuje kolika bi bila pojava Y ako je X nula “β” – regresijski koeficijent; pokazuje za koliko se u prosjeku promjeni Y ako se X poveča za jedinicu

Primjer 5: Ustanovite da li su pojave u slijedećoj tabeli povezane, i ako jesu izračunajte parametre regresijskog modela

ANALIZA VARIJANCE A N O V A

TABELA ANALIZE VARIJANCE A N O V A Source df SS MS Regresion k Residual n-k-1 Total n-1 KOEFICIJENT DETERMINACIJE

Regression Statistics Multiple R 0,945571 R Square 0,894104 SUMMARY OUTPUT Regression Statistics Multiple R 0,945571 R Square 0,894104 Adjusted R Square 0,8676 Standard Error 4,661627 Observations 6 Koeficijent korelacije   Koeficijent determinacije   Standardna devijacija regresije   ANOVA df SS MS F Signifikance F Regression 1 733,9103 33,77286 0,004363 Residual 4 86,9230 21,73077 Total 5 820,8333 = 86,9230 / 4   Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -7,38 5,753054 -1,2836 0,268596 -23,3577 8,588424 X 0,823 0,14163 5,811442 0,004363 0,429848 1,216306