Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000

Slides:



Advertisements
Similar presentations
10.4 Factoring to solve Quadratics – Factoring to solve Quad. Goals / “I can…”  Solve quadratic equations by factoring.
Advertisements

Section SOLVING OBLIQUE TRIANGLES
8-3 Special Right Triangles
Trigonometry Law of Sines Section 6.1 Review Solve for all missing angles and sides: a 3 5 B A.
The Law of Sines! Homework: Lesson 12.3/1-10, 12-14, 19, 20
Topic 1 Pythagorean Theorem and SOH CAH TOA Unit 3 Topic 1.
The Pythagorean Theorem
The Law of SINES. When Do I use Law of Sines vs. Law of Cosine ? Two sides One opposite angle given Angle opposite side Two angles One opposite side given.
Copyright © 2013 Pearson Education, Inc. Section 2.4 Formulas.
Chapter 13 Sec 1 Right Triangle Trigonometry 2 of 12 Algebra 2 Chapter 13 Section 1 The ratios of the sides of the right triangle can be used to define.
9.5 Apply the Law of Sines When can the law of sines be used to solve a triangle? How is the SSA case different from the AAS and ASA cases?
Chapter 6.  Use the law of sines to solve triangles.
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
Warm UP! Solve for all missing angles and sides: x 3 5 Y Z.
Final Review. 1. Answer: 49° Answer: 3240° 2.
7.7 Law of Cosines. Use the Law of Cosines to solve triangles and problems.
EXAMPLE 1 Solve a triangle for the AAS or ASA case Solve ABC with C = 107°, B = 25°, and b = 15. SOLUTION First find the angle: A = 180° – 107° – 25° =
8-8 The Pythagorean Theorem Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Law of Sines  Use the Law of Sines to solve oblique triangles (AAS or ASA).  Use the Law of Sines to solve oblique triangles (SSA).  Find the.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Chapter 9 Section 2.
Warm Up Solve ΔSJT given s = 49, side j = 16, and side T = 115°. (Round to the nearest whole number) S = _____ J = _____ T = _____ s = _____ j = _____.
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
7.7 Law of Cosines.
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Law of Cosines.
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Chapter 9 Section 2.
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Aim: How do we work with mid-segments and midpoints?
Find: AreaABCD [ft2] C 27,800 30,500 B 33,200 36,000 N A D set up
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Labelling a Triangle In a general triangle, the vertices are labelled with capital letters. B A C B A C The angles at each vertex are labelled with that.
Presentation transcript:

Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000 LAB@105 F = 438.16 [ft] Find the area of Triangle A B C, in square feet. [pause] In this problem, ---- o LCC’@105 F = 203.56 [ft] o using a steel tape o calibrated at 53 F

Find: AreaABC [ft2] C A B C’ LAB@105 F 43,560 44,600 44,630 45,000 o 43,560 44,600 44,630 45,000 LAB@105 F = 438.16 [ft] the length from Point A to Point B was measured at a temperature of 105 degrees Fahrenheit. o LCC’@105 F = 203.56 [ft] o using a steel tape o calibrated at 53 F

Find: AreaABC [ft2] C LCC’@105 F A B C’ LAB@105 F 43,560 44,600 44,630 o A B C’ LAB@105 F o 43,560 44,600 44,630 45,000 LAB@105 F = 438.16 [ft] The length from Point C to Point C prime was also measured at a temperature of 105 degrees Fahrenheit. o LCC’@105 F = 203.56 [ft] o using a steel tape o calibrated at 53 F

Find: AreaABC [ft2] C LCC’@105 F A B C’ LAB@105 F 43,560 44,600 44,630 o A B C’ LAB@105 F o 43,560 44,600 44,630 45,000 LAB@105 F = 438.16 [ft] Both of these measurement were made using a steel tape, --- o LCC’@105 F = 203.56 [ft] o using a steel tape o calibrated at 53 F

Find: AreaABC [ft2] C LCC’@105 F A B C’ LAB@105 F 43,560 44,600 44,630 o A B C’ LAB@105 F o 43,560 44,600 44,630 45,000 LAB@105 F = 438.16 [ft] which was calibrated at 53 degrees Fahrenheit. Also note that angles --- o LCC’@105 F = 203.56 [ft] o using a steel tape o calibrated at 53 F

Find: AreaABC [ft2] C LCC’@105 F A B C’ LAB@105 F 43,560 44,600 44,630 o A B C’ LAB@105 F o 43,560 44,600 44,630 45,000 LAB@105 F = 438.16 [ft] C C prime A, and C C prime B, measure to be 90 degrees. Therefore, we’ve effectively been given --- o LCC’@105 F = 203.56 [ft] o using a steel tape o calibrated at 53 F

Find: AreaABC [ft2] C height LCC’@105 F A B C’ LAB@105 F width 43,560 o A B C’ LAB@105 F width o 43,560 44,600 44,630 45,000 LAB@105 F = 438.16 [ft] the dimensions for the width and height, of the triangle. [pause] To find the area of the oblique Triangle --- o LCC’@105 F = 203.56 [ft] o using a steel tape o calibrated at 53 F

Find: AreaABC [ft2] C LCC’@105 F =203.56 [ft] steel tape A B (53 F) o =203.56 [ft] steel tape o A B (53 F) LAB@105 F =438.16 [ft] o A B C, we first need to determine the appropriate area equation to use. ---

Find: AreaABC [ft2] C LCC’@105 F =203.56 [ft] steel tape A B (53 F) o =203.56 [ft] steel tape o A B (53 F) LAB@105 F =438.16 [ft] o # [pause] We’ll begin by defining Capital A subscript A, B and C ---- known variables area equation 1 2 3

Find: AreaABC [ft2] C LCC’@105 F =203.56 [ft] AC AA AB steel tape A B o =203.56 [ft] AC AA AB steel tape o A B (53 F) LAB@105 F =438.16 [ft] o # as the interior angles of the triangle, at Points A, B and C respectively. Also, --- known variables area equation 1 2 3

Find: AreaABC [ft2] C LCC’@105 F =203.56 [ft] AC AA AB steel tape A B o =203.56 [ft] AC AA AB steel tape o A B (53 F) LAB@105 F =438.16 [ft] o # lower-case letters a, b and c will refer to ---- known variables area equation 1 2 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables side lengths on the opposite side of the triangle from the angle, of the same letter. known variables area equation 1 2 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables On to our area equations, if we know the measurement for Angle A, and side lengths --- known variables area equation 1 2 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables b and c, then the area of the triangle can be calculated as one half times --- known variables area equation 1 AA, b, c 2 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables b, times c, times the sin of Angle A. This equation can be modified in the event Angle B, ---- known variables area equation 1 AA, b, c 0.5 * b * c * sin(AA) 2 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables side a and side c are known, or if Angle C, side a, and --- known variables area equation 1 AB, a, c 0.5 * a * c * sin(AB) 2 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables and side b are known. A second equation to find the area ---- known variables area equation 1 AC, a, b 0.5 * a * b * sin(AC) 2 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables of a triangle is if all three side lengths are known, --- known variables area equation 1 AC, a, b 0.5 * a * b * sin(AC) 2 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables then the area equals the square root of the product of ---- known variables area equation 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c 3

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables s, s minus a, s minus b, and s minus c. This is called Heron’s equation, where by variable s equals --- known variables area equation 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c s * (s-a) * (s-b) * (s-c) 3

Find: AreaABC [ft2] b a c C AC AA AB A B s = 0.5 * (a+b+c) # semiperimeter of the triangle, or one half, times of the perimeter of the triangle. A third equation for the area --- known variables area equation 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c s * (s-a) * (s-b) * (s-c) 3

Find: AreaABC [ft2] b a c C AC AA AB A B s = 0.5 * (a+b+c) # of a triangle is when all 3 angles are known, and the length of --- known variables area equation 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c s * (s-a) * (s-b) * (s-c) 3

Find: AreaABC [ft2] b a c C AC AA AB A B s = 0.5 * (a+b+c) # 1 side is also know. If side a is known, then the area equals, a squared --- known variables area equation 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c s * (s-a) * (s-b) * (s-c) 3 AA, AB, AC, a

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables area equation times the sin of Angle B, times the sin of Angle C, divided by 2 times the sin of Angle A. This equation can be modified in the event --- 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c s * (s-a) * (s-b) * (s-c) a2 * sin(AB) * sin(AC) 3 AA, AB, AC, a 2 * sin(AA)

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables area equation we know the length of side b instead of side a, or the length of side --- 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c s * (s-a) * (s-b) * (s-c) b2 * sin(AA) * sin(AC) 3 AA, AB, AC, b 2 * sin(AB)

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables area equation c. [pause] The fourth and final equation for area ---- 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c s * (s-a) * (s-b) * (s-c) c2 * sin(AA) * sin(AB) 3 AA, AB, AC, c 2 * sin(AC)

Find: AreaABC [ft2] b a c C AC AA AB A B # known variables area equation is the one we’ll use for this example where the area simply equals, --- 1 AC, a, b 0.5 * a * b * sin(AC) 2 a, b, c s * (s-a) * (s-b) * (s-c) c2 * sin(AA) * sin(AB) 3 AA, AB, AC, c 2 * sin(AC)

Find: AreaABC [ft2] C height width A B # known variables area equation 1 AC, a, b 0.5 * a * b * sin(AC) one half, times the height, times the width. So, returning to our problem, --- 2 a, b, c s * (s-a) * (s-b) * (s-c) c2 * sin(AA) * sin(AB) 3 AA, AB, AC, c 2 * sin(AC) 4 height, width 0.5 * height * width

Find: AreaABC [ft2] ? ? C LCC’@105 F height =203.56 [ft] width o =203.56 [ft] width steel tape o A B (53 F) LAB@105 F =438.16 [ft] o we need to determine the actual height and width of Triangle A B C, after it has been corrected --- AreaABC=0.5 * height * width ? ?

Find: AreaABC [ft2] ? ? C LCC’@105 F height =203.56 [ft] width o =203.56 [ft] width steel tape o A B (53 F) LAB@105 F =438.16 [ft] o for the temperature difference. [pause] In this problem, the actual height of Triangle A B C equals ---- AreaABC=0.5 * height * width ? ?

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o the length of segment C C prime, if it were measured at 53 degrees Fahrenheit, ---- AreaABC=0.5 * height * width height = LCC’@53 F o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o which is the calibrated temperature of the tape. However, we only have --- AreaABC=0.5 * height * width height = LCC’@53 F o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o a measurement of line segment C C prime when the temperature is --- AreaABC=0.5 * height * width height = LCC’@53 F o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o 105 degrees Fahrenheit. Therefore, we’ll equate the height of the triangle to this measurement, plus, --- AreaABC=0.5 * height * width height = LCC’@53 F o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o temperature correction a temperature correction distance, C. [pause] In the same manner, --- AreaABC=0.5 * height * width distance height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o temperature correction the actual width of the triangle will equal the width, if the measurement were taken --- AreaABC=0.5 * height * width distance height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o width = LAB@53 F = LAB@105 F + C

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o temperature correction at the calibrated 53 degrees Fahrenheit, which we’ll equate to measurement taken --- AreaABC=0.5 * height * width distance height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o width = LAB@53 F = LAB@105 F + C o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o temperature correction at 105 degrees Fahrenheit, plus a temperature correction distance, C. [pause] Since we know the height and --- AreaABC=0.5 * height * width distance height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o width = LAB@53 F = LAB@105 F + CAB,105 F,53 F o o o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o temperature correction width of Triangle A B C at 105 degrees Fahrenheit. We just need to solve for the --- AreaABC=0.5 * height * width distance height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o width = LAB@53 F = LAB@105 F + CAB,105 F,53 F o o o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape o A C’ B (53 F) LAB@105 F =438.16 [ft] o temperature correction temperature correction distances. The temperature correction distances equal --- AreaABC=0.5 * height * width distance height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o width = LAB@53 F = LAB@105 F + CAB,105 F,53 F o o o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F the temperature during the measurement, minus ---- o o o o width = LAB@53 F = LAB@105 F + CAB,105 F,53 F o o o o CCC’,105 F,53 F =(TM-TC) * LM * α temp. o o correction CAB,105 F,53 F =(TM-TC) * LM * α o o distances

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o temperature during measurement the calibrated temperature, times the measured length, ---- calibrated temperature CCC’,105 F,53 F =(TM-TC) * LM * α temp. o o correction CAB,105 F,53 F =(TM-TC) * LM * α o o distances

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o temperature during measurement calibrated temperature times the coefficient of thermal expansion. Since the problem states the tape is steel, --- measured length coefficient CCC’,105 F,53 F =(TM-TC) * LM * α of thermal o o expansion CAB,105 F,53 F =(TM-TC) * LM * α o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o temperature during measurement calibrated temperature the coefficient of thermal expansion, alpha, equals ---- measured length coefficient CCC’,105 F,53 F =(TM-TC) * LM * α of thermal o o expansion CAB,105 F,53 F =(TM-TC) * LM * α o o

Find: AreaABC [ft2] α=6.45*10-6[ F-1] C LCC’@105 F height =203.56 [ft] o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o temperature during measurement calibrated temperature 6.45 times 10 to the negative 6, degree Fahrenheit, to the negative 1. And after plugging in the values --- α=6.45*10-6[ F-1] o coefficient CCC’,105 F,53 F =(TM-TC) * LM * α o o of thermal CAB,105 F,53 F =(TM-TC) * LM * α expansion o o

Find: AreaABC [ft2] α=6.45*10-6[ F-1] C LCC’@105 F height =203.56 [ft] o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o for temperatures and lengths, the temperature correction distances equal ---- α=6.45*10-6[ F-1] o coefficient CCC’,105 F,53 F =(TM-TC) * LM * α o o of thermal CAB,105 F,53 F =(TM-TC) * LM * α expansion o o

Find: AreaABC [ft2] α=6.45*10-6[ F-1] C LCC’@105 F height =203.56 [ft] o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o 0.068 feet and 0.147 feet, for the height and width, respectively. We’ll round these values --- α=6.45*10-6[ F-1] o CCC’,105 F,53 F =(TM-TC) * LM * α = 0.068 [ft] o o CAB,105 F,53 F =(TM-TC) * LM * α = 0.147 [ft] o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width to the nearest 100th of a foot, and after plugging in the temperature correction distances, --- height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o width = LAB@53 F = LAB@105 F + CAB,105 F,53 F o o o o CCC’,105 F,53 F =0.07 [ft] = 0.068 [ft] o o CAB,105 F,53 F =0.15 [ft] = 0.147 [ft] o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width as well as the measured lengths at 105 degrees Fahrenheit, --- height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o width = LAB@53 F = LAB@105 F + CAB,105 F,53 F o o o o CCC’,105 F,53 F =0.07 [ft] = 0.068 [ft] o o CAB,105 F,53 F =0.15 [ft] = 0.147 [ft] o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width the actual lengths for the height and width of Triangle A B C equal, --- height = LCC’@53 F = LCC’@105 F + CCC’,105 F,53 F o o o o width = LAB@53 F = LAB@105 F + CAB,105 F,53 F o o o o CCC’,105 F,53 F =0.07 [ft] = 0.068 [ft] o o CAB,105 F,53 F =0.15 [ft] = 0.147 [ft] o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width 203.63 feet and 438.31 feet, respectively. Plugging these values into our equation --- height = 203.63 [ft]=LCC’@105 F+ CCC’,105 F,53 F o o o width = 438.31 [ft]=LAB@105 F + CAB,105 F,53 F o o o CCC’,105 F,53 F =0.07 [ft] = 0.068 [ft] o o CAB,105 F,53 F =0.15 [ft] = 0.147 [ft] o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width for the area of Triangle A B C, we find the area of the triangle equals, --- height = 203.63 [ft]=LCC’@105 F+ CCC’,105 F,53 F o o o width = 438.31 [ft]=LAB@105 F + CAB,105 F,53 F o o o CCC’,105 F,53 F =0.07 [ft] = 0.068 [ft] o o CAB,105 F,53 F =0.15 [ft] = 0.147 [ft] o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width = 44,627 [ft2] 44,627 square feet. [pause] height = 203.63 [ft]=LCC’@105 F+ CCC’,105 F,53 F o o o width = 438.31 [ft]=LAB@105 F + CAB,105 F,53 F o o o CCC’,105 F,53 F =0.07 [ft] = 0.068 [ft] o o CAB,105 F,53 F =0.15 [ft] = 0.147 [ft] o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width = 44,627 [ft2] When reviewing the possible solutions, ---- 43,560 44,600 44,630 45,000 height = 203.63 [ft] width = 438.31 [ft] CCC’,105 F,53 F =0.07 [ft] o o CAB,105 F,53 F =0.15 [ft] o o

Find: AreaABC [ft2] C LCC’@105 F height =203.56 [ft] width steel tape o =203.56 [ft] width steel tape C’ o A LAB@105 F B (53 F) =438.16 [ft] o AreaABC=0.5 * height * width = 44,627 [ft2] the answer is C. 43,560 44,600 44,630 45,000 height = 203.63 [ft] width = 438.31 [ft] AnswerC

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4