Examples Double Angle Formulas

Slides:



Advertisements
Similar presentations
Trigonometric Identities
Advertisements

Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
10.3 Double Angle and Half Angle Formulas
5.5 Solving Trigonometric Equations Example 1 A) Is a solution to ? B) Is a solution to cos x = sin 2x ?
Find the period of the function y = 4 sin x
Solving Trigonometric Equations. First Degree Trigonometric Equations: These are equations where there is one kind of trig function in the equation and.
Section 5.5.  In the previous sections, we used: a) The Fundamental Identities a)Sin²x + Cos²x = 1 b) Sum & Difference Formulas a)Cos (u – v) = Cos u.
Trig – 4/21/2017 Simplify. 312 Homework: p382 VC, 1-8, odds
Section 5.5 Double Angle Formulas
Warm Up Sign Up. AccPreCalc Lesson 27 Essential Question: How are trigonometric equations solved? Standards: Prove and apply trigonometric identities.
Chapter 6 Trig 1060.
Sum and Difference Formulas New Identities. Cosine Formulas.
Using our work from the last few weeks,
_______º _______ rad _______º ________ rad ­­­­ _______º _______ rad _______º _______ rad ­­­­ _______º _______ rad ______º _______ rad Unit Circle use.
Use the formula Area = 1/2bcsinA Think about the yellow area What’s sin (α+β)?
Aim: How do we solve trig equations using reciprocal or double angle identities? Do Now: 1. Rewrite in terms of 2. Use double angle formula to rewrite.
Double Angle Identities (1) sin (A + A) = sin A cos A + cos A sin A sin (2A) sin (2A) = 2 sin A cos A sin (A + B) = sin A cos B + cos A sin B What does.
Double-Angle and Half-Angle Identities
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
Trigonometry Review.
Section 5.5B Half Angle Formulas
Graphs of Trigonometric Functions
Special Angle Values.
Solving Trigonometric Equations
5.5/5.6 – Double- and Half-Angle Identities
Trigonometric Function: The Unit circle
Sum and Difference Formulas
Review 5.1 to 5.3.
Sum and Difference Identities for the Sin Function
Multiple-Angle and Product-Sum Formulas
Use an addition or subtraction formula to find the exact value of the expression: {image} Select the correct answer: {image}
Find all solutions of the equation
FLASH! Fredda Wyatt 01/2009.
9.3 Double-Angle and Half-Angle Formulas
Find sin 2x, cos 2x, and tan 2x from the given information: {image} Select the correct answer:
Trig Functions: the unit circle approach
Trigonometric Equations with Multiple Angles
Double- And Half-Angle Formulas
5-3 Tangent of Sums & Differences
Warm-up: Find sin(195o) HW : pg. 501(1 – 18).
Homework Log Fri 4/22 Lesson 8 – 4 Learning Objective:
Solving Trigonometric Equations
Solving Through Factoring
Review Find the EXACT value of: 1. sin 30° 2. cos 225° 3. tan 135° 4. cos 300° How can we find the values of expressions like sin 15° ?? We need some new.
Aim: What are the double angle and half angle trig identities?
Double angle formulae.
Half-Angle Identities
Properties of Trig Fcts.
Exact Trig Pairs.
sin x cos x tan x 360o 90o 180o 270o 360o 360o 180o 90o C A S T 0o
Multiple-Angle and Product-to-Sum Formulas (Section 5-5)
Double-Angle and Half-Angle Formulas 5.3
Power-reducing & Half angle identities
5.5-Multiple Angle Formulas
Double-Angle, Half-Angle Formulas
5.5 Multiple Angle & Product-to-Sum Formulas
Ch 5.5.
Solving Trigonometric Equations
Unit #7: Trig Identities Lesson 5: Half-Angle Formulas
Double-Angle and Half-angle Formulas
8.1 Graphical Solutions to Trig. Equations
Trig Graphs And equations Revision.
Build and Use Unit Circle
Unit #7: Trig Identities Lesson 5: Half-Angle Formulas
Trigonometric Functions
x x HW 13: Inverse Trig Functions HW 13: Inverse Trig Functions
Double Angle Identities
Objective: Finding solutions of trigonometric equations.
Aim: How do we solve trig equations using
Presentation transcript:

Examples Double Angle Formulas Find the exact value of the trig function. 5 1) sin x 3 x 4 2) cos x x = 4 y = 3 r = 5 3) tan x

Examples Double Angle Formulas 5 Find the exact value of the trig function. 3 x -4 4) sin 2x x = -4 y = 3 r = 5 5) cos 2x 6) tan 2x

Examples Double Angle Formulas Find the exact value of the equation in the interval [0 , 2π). 7) sin 2x + cos x = 0 8) sin 2x sin x = cos x (2 sin x cos x) + cos x = 0 (2 sin x cos x) sin x = cos x cos x (2 sin x + 1) = 0 2 sin 2 x cos x - cos x = 0 cos x = 0 2 sin x + 1 = 0 cos x ( 2 sin 2 x - 1) = 0 sin x = -1/2 cos x = 0 2 sin 2 x - 1 = 0 sin 2 x = 1/2 sin x =

Examples Double Angle Formulas Find the exact value of the equation in the interval [0 , 2π). 9) cos 2x + sin x = 0 1 - 2 sin 2 x + sin x = 0 write in standard form and change all the signs (multiply by -1) to make sin2x a positive # . 2 sin 2 x - sin x - 1 = 0 think of this as 2x2 - x - 1 and factor (2x + 1) (x - 1) Now put the sin x back in. (2 sin x + 1) (sin x - 1) = 0 2 sin x + 1 = 0 sin x - 1 = 0 sin x = -1/2 sin x = 1