WELCOME Math 2 Last Night’s HW: None Chapter 9: Circles

Slides:



Advertisements
Similar presentations
Chapter 10 Circles Section 10.3 Inscribed Angles U SING I NSCRIBED A NGLES U SING P ROPERTIES OF I NSCRIBED P OLYGONS.
Advertisements

Warm Up Determine the measures of the indicated angles Now put it all together to solve for the missing angle.
TODAY IN GEOMETRY… Review:
Warm Up Determine the measures of the indicated angles Now put it all together to solve for the missing angle.
For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1)2)
10.3 Inscribed Angles Goal 1: Use inscribed angles to solve problems Goal 2: Use properties of inscribed polygons CAS 4, 7, 16, 21.
Inscribed Angles Section 10.5.
10.2– Find Arc Measures. TermDefinitionPicture Central Angle An angle whose vertex is the center of the circle P A C.
Warm up 30  80  100  180  100  260 . Review HW.
Use Inscribed Angles and Polygons
6.4 Use Inscribed Angles and Polygons Quiz: Friday.
Warm – up 2. Inscribed Angles Section 6.4 Standards MM2G3. Students will understand the properties of circles. b. Understand and use properties of central,
1 Sect Inscribed Angles Goal 1 Using Inscribed Angles Goal 2 Using Properties of Inscribed Angles.
10.4 Use Inscribed Angles and Polygons. Inscribed Angles = ½ the Measure of the Intercepted Arc 90 ̊ 45 ̊
Section 10.3 – Inscribed Angles
Geometry Section 10-4 Use Inscribed Angles and Polygons.
Chapter 10.4 Notes: Use Inscribed Angles and Polygons
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
Warm up. P A B Case I: Central Angle: Vertex is AT the center 
Inscribed Angles 10.3 California State Standards
Warm Up Week 1. Section 10.3 Day 1 I will use inscribed angles to solve problems. Inscribed Angles An angle whose vertex is on a circle and whose.
Bell work 1 Find the measure of Arc ABC, if Arc AB = 3x, Arc BC = (x + 80º), and __ __ AB BC AB  BC AB = 3x º A B C BC = ( x + 80 º )
10.3 Inscribed Angles. Definitions Inscribed Angle – An angle whose vertex is on a circle and whose sides contain chords of the circle Intercepted Arc.
Section 10.3 Inscribed Angles. Inscribed Angle An angle whose vertex is on a circle and whose sides contain chords of the circle Inscribed Angle.
Inscribed Angles Section 10.3 Goal: To use inscribed angles to solve problems To use properties of inscribed polygons.
Warm up. Review HW Skills Check P A B Case I: Central Angle: Vertex is AT the center 
Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle INTERCEPTED ARC INSCRIBED ANGLE.
Have your homework out and be ready to discuss any questions you had. Wednesday, February 6, 2013 Agenda No TISK or MM HW Questions (9-2 & 9-3) Lesson.
Warm up 30  80  100  180  100  260 . Inscribed Angles and Inscribed Quadrilaterals.
Inscribed and Circumscribed Polygons Inscribed n If all of the vertices of a polygon lie on the circle, then the polygon is inscribed.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
10.3 Inscribed Angles Intercepted arc. Definition of Inscribed Angles An Inscribed angle is an angle with its vertex on the circle.
Section 10-3 Inscribed Angles. Inscribed angles An angle whose vertex is on a circle and whose sides contain chords of the circle. A B D is an inscribed.
Use Inscribed Angles and Polygons Lesson Definitions/Theorem 10.7 BAC = ½(BC) Intercepted Arc Inscribed Angle A B C. Central Angle.
Warm up April 22. EOCT Week 14 #2 Review HW P A B Case I: Central Angle: Vertex is AT the center 
Inscribed Angles Lesson 10.3b California State Standards 4: Prove theorems involving congruence and similarity 7: Prove/use theorems involving circles.
Topic 12-3 Definition Secant – a line that intersects a circle in two points.
Warm up 30  80  100  180  100  260 . Wheel of Formulas!!
For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1)2)
Circles.
Geometry 11-4 Inscribed Angles
Do Now.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
10.3 Inscribed Angles Unit IIIC Day 5.
10.7 Inscribed and Circumscribed Polygons
Warm up.
Warm Up Determine the measures of the indicated angles
Warm up NL and KM are diameters.
Warm up 30 80 100 180 100 260.
Warm up 30 80 100 180 100 260.
Daily Check For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1) 2)
Daily Check For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1) 2)
Section 10.3 Inscribed Angles
Warm-Up Determine whether arc is a major or minor arc.
Warm up 30 80 100 180 100 260.
Warm up.
Warm up.
8.3 Inscribed Polygons There are a couple very helpful Theorems about Polygons Inscribed within circles that we will look at.
Section 10.3 – Inscribed Angles
Use Inscribed Angles and Polygons
Inscribed Angles and Quadrilaterals
Warm up NL and KM are diameters.
Warm up 30 80 100 180 100 260.
Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle
_____________: An angle whose vertex is on the circle and whose sides are chords of the circle
Section 10.4 Use Inscribed Angles And Polygons Standard:
Inscribed Angles & Inscribed Quadrilaterals
10.4 Inscribed Angles.
Warm up #1 1/6 & 1/9 30 80 100 180 100 260.
10.4 Use Inscribed ∡s and Polygons
Presentation transcript:

WELCOME Math 2 Last Night’s HW: None Chapter 9: Circles Tonight’s HW: 10.1 Worksheet Test: Next Wednesday/Thursday!

Warm Up 1. Factor: 2x2 + 3x - 9 Solve by factoring:

Chap 10: Day 1 Learning Target Finding angles and arc lengths within Inscribed Polygons in circles.

Inscribed Polygon If all vertices of a polygon lie on the side of a circle, then the polygon is Inscribed in the circle and the circle is circumscribed about the polygon.

Inscribed Triangles and Quadrilaterals Right ∆ Theorem An inscribed ∆ is right IFF the hypotenuse is the diameter of the ⊙ AB is a Diam./Hypotenuse. Quadrilateral Theorem A quad. can be inscribed in ⊙ IFF the opposite angles are supplementary ∠𝑨+∠𝑫=∠𝑩+∠𝑪=𝟏𝟖𝟎⁰ A B A C C B D