Mechanism of neutrophil recruitment induced by IL-8 in chronic sinusitis  Hideaki Suzuki, MDa, Yuichi Takahashi, MDb, Hideya Wataya, MDa,c, Katsuhisa Ikeda,

Slides:



Advertisements
Similar presentations
Assessment of inflammation in noninfectious chronic maxillary sinusitis  Pascal Demoly, MDa, Louis Crampette, MDb, Michel Mondain, MDb, Alison M. Campbell,
Advertisements

Daniela P. Metz, PhDa, Annette S
Relationship of nasal carriage of Staphylococcus aureus to pathogenesis of perennial allergic rhinitis  Teruo Shiomori, MDa, Shin-ichi Yoshida, MD, PhDb,
Different expression of cytokine and membrane molecules by circulating lymphocytes on acute mental stress in patients with atopic dermatitis in comparison.
Glucocorticoids inhibit chemokine generation by human eosinophils
The effects of upper respiratory infection on T-cell proliferation and steroid sensitivity of asthmatics  Elcio O. Vianna, MD, PhD, Jay Westcott, PhD,
The environmental pollutant pyrene induces the production of IL-4
Nerve growth factor is preformed in and activates human peripheral blood eosinophils  Abraham Solomon, MDa,b, Luigi Aloe, PhDc, Jacob Pe’er, MDa, Joseph.
IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis  Hyun-Woo Shin, MD, PhD, Dong-Kyu Kim, MD, Min-Hyun Park, MD,
Predominance of type 2 cytokine–producing CD4+ and CD8+ cells in patients with atopic dermatitis  Masatoshi Nakazawa, DVMa, Nakako Sugi, MDb, Hiroshi.
Allergic Rhinitis and Its Impact on Asthma
Damage of the pharyngeal mucosa and hyperresponsiveness of airway in sinusitis  Giovanni Rolla, MDa, Paola Colagrande, MDa, Ermanno Scappaticci, MDb, Flavia.
Evidence for a role for IL-5 and eotaxin in activating and recruiting eosinophils in drug- induced cutaneous eruptions  Nikhil Yawalkar, MD, Maithili Shrikhande,
Aminopeptidase activity in human nasal mucosa
Hong Wei Chu, MDa, Monica Kraft, MDa, James E. Krause, PhDb, Michael D
Role of IL-9 in the pathophysiology of allergic diseases
Mast cell–T cell interactions
Comparison of once-daily ebastine 20 mg, ebastine 10 mg, loratadine 10 mg, and placebo in the treatment of seasonal allergic rhinitis  Paul H. Ratner,
Allergic airway disease is unaffected by the absence of IL-4Rα–dependent alternatively activated macrophages  Natalie E. Nieuwenhuizen, PhD, Frank Kirstein,
Chemical mediators in atopic dermatitis: Involvement of leukotriene B4 released by a type I allergic reaction in the pathogenesis of atopic dermatitis 
Expression of 11β-hydroxysteroid dehydrogenase 1 and 2 in patients with chronic rhinosinusitis and their possible contribution to local glucocorticoid.
Pathophysiology of severe asthma
Comparison of the efficacy of budesonide and fluticasone propionate aqueous nasal spray for once daily treatment of perennial allergic rhinitis  James.
An obligate role for T-cell receptor αβ+ T cells but not T-cell receptor γδ+ T cells, B cells, or CD40/CD40L interactions in a mouse model of atopic dermatitis 
Eosinophil peroxidase stimulates the release of granulocyte-macrophage colony- stimulating factor from bronchial epithelial cells  Shinji Motojima, MDa,
Chronologic analysis of in situ cytokine expression in mite allergen-induced dermatitis in atopic subjects  Nobuo Yamada, MDa, Motoshi Wakugawa, MDa,
Jesús Merayo-Lloves, MD, Tong Z. Zhao, MD, James E. Dutt, BA, C
Nobuhisa Terada, MDa, Akiyoshi Konno, MDb, Kiyoshi Togawa, MDa 
Stem cell factor in nasal polyposis and allergic rhinitis: Increased expression by structural cells is suppressed by in vivo topical corticosteroids 
Diagnostic criteria for sarcoidosis of the sinuses
Expression and localization of histamine H2 receptor messenger RNA in human nasal mucosa  Noriko Hirata, MDa, Kazuhiko Takeuchi, MDa, Kotaro Ukai, MDa,
A review of the current guidelines for allergic rhinitis and asthma
Evidence for expression of eosinophil-associated IL-12 messenger RNA and immunoreactivity in bronchial asthma  Esra Nutku, MDa, Abdelilah Soussi Gounni,
Glucocorticoids inhibit chemokine generation by human eosinophils
Basophils and eosinophils in allergic rhinitis
Inflammatory cells, cytokine and chemokine expression in asthma immunocytochemistry and in situ hybridization  Qutayba Hamid, MD, PhD, Editor  Journal.
Stem cell factor in nasal polyposis and allergic rhinitis: Increased expression by structural cells is suppressed by in vivo topical corticosteroids 
Daniela P. Metz, PhDa, Annette S
Epithelial cells as regulators of airway inflammation
Inflammatory cell and epithelial characteristics of perennial allergic and nonallergic rhinitis with a symptom history of 1 to 3 years’ duration  Kawa.
Chronic sinusitis Journal of Allergy and Clinical Immunology
Role of Cytotoxic T Cells in Chronic Alopecia Areata
Nasal eosinophilia and IL-5 mRNA expression in seasonal allergic rhinitis induced by natural allergen exposure: Effect of topical corticosteroids  Keisuke.
Gross pathology and histopathology of asthma
IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis  Hyun-Woo Shin, MD, PhD, Dong-Kyu Kim, MD, Min-Hyun Park, MD,
IL-9 expression by human eosinophils: Regulation by IL-1β and TNF-α
Basophil and eosinophil accumulation and mast cell degranulation in the nasal mucosa of patients with hay fever after local allergen provocation  Alex.
TH1/TH2 cytokines and inflammatory cells in skin biopsy specimens from patients with chronic idiopathic urticaria: Comparison with the allergen-induced.
Assessment of inflammation in noninfectious chronic maxillary sinusitis  Pascal Demoly, MDa, Louis Crampette, MDb, Michel Mondain, MDb, Alison M. Campbell,
Relation of epidermal growth factor receptor expression to goblet cell hyperplasia in nasal polyps  Pierre-Regis Burgel, MDa, Estelle Escudier, MDb, Andre.
Expression and function of histamine receptors in human monocyte-derived dendritic cells  Marco Idzko, MDa, Andrea la Sala, PhDb, Davide Ferrari, PhDc,
Sinus mucosal IL-8 gene expression in chronic rhinosinusitis
Larry L. Thomas, PhD, Michelle D. Haskell, Emmanuel U
IL-13 induces eosinophil recruitment into the lung by an IL-5– and eotaxin-dependent mechanism  Samuel M. Pope, BAa,b, Eric B. Brandt, PhDa, Anil Mishra,
Prognosis and prediction of response to surgery in allergic patients with chronic sinusitis  François Lavigne, MDa, Cong Thu Nguyen, MDa, Lisa Cameron,
Intranasal administration of eotaxin increases nasal eosinophils and nitric oxide in patients with allergic rhinitis  Toyoyuki Hanazawa, MD, PhD, Julio.
Corticosteroids in the treatment of pediatric allergic rhinitis
CCL17/thymus and activation-regulated chemokine induces calcitonin gene–related peptide in human airway epithelial cells through CCR4  Kandace Bonner,
Changes in sputum counts and airway hyperresponsiveness after budesonide: Monitoring anti-inflammatory response on the basis of surrogate markers of airway.
Rame A. Taha, MDa, Eleanor M. Minshall, PhDa, Donald Y. M
Monocyte chemotactic proteins in allergen-induced inflammation in the nasal mucosa: Effect of topical corticosteroids  Pota Christodoulopoulos, BSca,
Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients  Pierre Pochard, PhDab, Philippe Gosset, PhDb, Corinne.
Cytokine profile in minor salivary glands from patients with bronchial asthma  Anne Tsicopoulos, MDa, b, Anne Janin, MDc, Hikmat Akoum, PhDa, Catherine.
IL-4– and IL-5–positive T lymphocytes, eosinophils, and mast cells in allergen-induced late-phase cutaneous reactions in atopic subjects  Luis T. Barata,
Footnotes1 Journal of Allergy and Clinical Immunology
IL-9 and c-Kit+ mast cells in allergic rhinitis during seasonal allergen exposure: Effect of immunotherapy  Kayhan T. Nouri-Aria, PhD, FRCPath, Charles.
Allergic fungal sinusitis: An immunohistologic analysis
Jens U. Ponikau, MD, David A. Sherris, MD, Hirohito Kita, MD, Eugene B
Dendritic cells in nasal mucosa of subjects with different allergic sensitizations  Susanne M. Reinartz, MD, Joost van Tongeren, MD, Danielle van Egmond,
IL-1 receptor–type expression in relation to atopy
Presentation transcript:

Mechanism of neutrophil recruitment induced by IL-8 in chronic sinusitis  Hideaki Suzuki, MDa, Yuichi Takahashi, MDb, Hideya Wataya, MDa,c, Katsuhisa Ikeda, MDa, Seiichiro Nakabayashi, MDa, Akira Shimomura, MDa, Tomonori Takasaka, MDa  Journal of Allergy and Clinical Immunology  Volume 98, Issue 3, Pages 659-670 (September 1996) DOI: 10.1016/S0091-6749(96)70100-8 Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 1 Profile of infiltrated polymorphonuclear cells in patients with chronic sinusitis and patients with allergic rhinitis. Each value represents the ratio of neutrophils and eosinophils to the total number of polymorphonuclear cells (n = 10). Bars indicate mean ± SEM. **p < 0.001. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 2 Immunohistochemical staining for IL-8 of the nasal smear. A, Chronic sinusitis. Positive staining is observed in the cytoplasm of polymorphonuclear cells. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 2 Immunohistochemical staining for IL-8 of the nasal smear. A, Chronic sinusitis. Positive staining is observed in the cytoplasm of polymorphonuclear cells. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 2 Immunohistochemical staining for IL-8 of the nasal smear. A, Chronic sinusitis. Positive staining is observed in the cytoplasm of polymorphonuclear cells. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 3 Immunohistochemical staining for IL-8 of mucosal sections. A, Chronic sinusitis. Nasal gland duct cells are positively stained. B, Chronic sinusitis. Mucus in the nasal gland shows strong reactivity. C, Allergic rhinitis. D, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 3 Immunohistochemical staining for IL-8 of mucosal sections. A, Chronic sinusitis. Nasal gland duct cells are positively stained. B, Chronic sinusitis. Mucus in the nasal gland shows strong reactivity. C, Allergic rhinitis. D, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 3 Immunohistochemical staining for IL-8 of mucosal sections. A, Chronic sinusitis. Nasal gland duct cells are positively stained. B, Chronic sinusitis. Mucus in the nasal gland shows strong reactivity. C, Allergic rhinitis. D, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 3 Immunohistochemical staining for IL-8 of mucosal sections. A, Chronic sinusitis. Nasal gland duct cells are positively stained. B, Chronic sinusitis. Mucus in the nasal gland shows strong reactivity. C, Allergic rhinitis. D, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 4 In situ hybridization for IL-8 mRNA of mucosal sections. A, Chronic sinusitis. Expression of mRNA can be seen in nasal gland duct cells. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 4 In situ hybridization for IL-8 mRNA of mucosal sections. A, Chronic sinusitis. Expression of mRNA can be seen in nasal gland duct cells. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 4 In situ hybridization for IL-8 mRNA of mucosal sections. A, Chronic sinusitis. Expression of mRNA can be seen in nasal gland duct cells. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 5 In situ hybridization for IL-8 mRNA of the nasal smear. A, Chronic sinusitis. Polymorphonuclear cells exhibit positive staining. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 5 In situ hybridization for IL-8 mRNA of the nasal smear. A, Chronic sinusitis. Polymorphonuclear cells exhibit positive staining. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 5 In situ hybridization for IL-8 mRNA of the nasal smear. A, Chronic sinusitis. Polymorphonuclear cells exhibit positive staining. B, Allergic rhinitis. C, Chronic sinusitis. Negative control. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 6 IL-8 level in nasal discharge. Nasal discharge was collected by suction, diluted 5 to 10 times with saline solution and centrifuged at 1000 g for 5 minutes. The supernatant was then subjected to enzyme immunoassay for IL-8 with Biotrak IL-8 ELISA system (Amersham International plc.) according to the manufacturer’s instructions. *p < 0.002. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions

FIG. 7 Hypothesis of neutrophil recruitment in chronic sinusitis. Neutrophil chemotactic substances including IL-8 released from nasal gland duct cells and epithelial cells (thin solid arrow) initiate neutrophil migration (striped arrows) out of vessels to the lumenal side and eventually into sinus effusion (wavy arrows). Emigrated neutrophils produce and secrete IL-8 (thick solid arrow), which further induces neutrophil migration and accumulation in sinus effusion. Bacteria and bacterial components may stimulate neutrophils, epithelial cells, and nasal gland duct cells to secrete IL-8 (dotted arrows). Accumulated neutrophils in sinus effusion probably release proteases and superoxides, which impair mucociliary function of the paranasal epithelium, and this causes retention of sinus effusion. As a result, the whole inflammatory process is prolonged. LTB 4, Leukotriene B 4; fMLP, N-formyl-methionyl-leucyl-phenylalanine. Journal of Allergy and Clinical Immunology 1996 98, 659-670DOI: (10.1016/S0091-6749(96)70100-8) Copyright © 1996 Mosby, Inc. Terms and Conditions