Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa

Slides:



Advertisements
Similar presentations
Date of download: 5/30/2016 Copyright © 2016 American Medical Association. All rights reserved. From: An Unusual Retinal Phenotype Associated With a Novel.
Advertisements

Retinitis pigmentosa associated with a mutation in BEST1
Volume 17, Issue 4, Pages (April 2009)
From: Deficiency of SHP-1 Protein-Tyrosine Phosphatase in “Viable Motheaten” Mice Results in Retinal Degeneration Invest. Ophthalmol. Vis. Sci ;47(3):
From: A Frameshift Mutation in RPGR Exon ORF15 Causes Photoreceptor Degeneration and Inner Retina Remodeling in a Model of X-Linked Retinitis Pigmentosa.
From: Cfh Genotype Interacts With Dietary Glycemic Index to Modulate Age-Related Macular Degeneration-Like Features in Mice Invest. Ophthalmol. Vis. Sci..
Volume 122, Issue 7, Pages (July 2015)
Volume 18, Issue 6, Pages (June 2016)
The Primordial Growth Disorder 3-M Syndrome Connects Ubiquitination to the Cytoskeletal Adaptor OBSL1  Dan Hanson, Philip G. Murray, Amit Sud, Samia A.
Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies  Mingchu Xu, Yajing (Angela)
Khanh-Nhat Tran-Viet, Caldwell Powell, Veluchamy A
Volume 8, Issue 2, Pages (August 2003)
Darryl Y. Nishimura, Lisa M. Baye, Rahat Perveen, Charles C
Recessive Mutations of the Gene TRPM1 Abrogate ON Bipolar Cell Function and Cause Complete Congenital Stationary Night Blindness in Humans  Zheng Li,
Biallelic Mutations in the Autophagy Regulator DRAM2 Cause Retinal Dystrophy with Early Macular Involvement  Mohammed E. El-Asrag, Panagiotis I. Sergouniotis,
James A. Poulter, Musallam Al-Araimi, Ivan Conte, Maria M
Reinventing a Common Strategy for Patterning the Eye
A Mutation in ZNF513, a Putative Regulator of Photoreceptor Development, Causes Autosomal-Recessive Retinitis Pigmentosa  Lin Li, Naoki Nakaya, Venkata.
Loss-of-Function Mutations in CAST Cause Peeling Skin, Leukonychia, Acral Punctate Keratoses, Cheilitis, and Knuckle Pads  Zhimiao Lin, Jiahui Zhao, Daniela.
Volume 19, Issue 2, Pages (January 2009)
REEP6: Retinitis Pigmentosa PMID:
A Missense Mutation in PRPF6 Causes Impairment of pre-mRNA Splicing and Autosomal-Dominant Retinitis Pigmentosa  Goranka Tanackovic, Adriana Ransijn,
Targeted High-Throughput Sequencing Identifies Mutations in atlastin-1 as a Cause of Hereditary Sensory Neuropathy Type I  Christian Guelly, Peng-Peng.
Mutations in TUBGCP4 Alter Microtubule Organization via the γ-Tubulin Ring Complex in Autosomal-Recessive Microcephaly with Chorioretinopathy  Sophie.
Mutations in TOPORS Cause Autosomal Dominant Retinitis Pigmentosa with Perivascular Retinal Pigment Epithelium Atrophy  Christina F. Chakarova, Myrto.
Newfoundland Rod-Cone Dystrophy, an Early-Onset Retinal Dystrophy, Is Caused by Splice-Junction Mutations in RLBP1  Erica R. Eichers, Jane S. Green, David.
Homozygosity Mapping Reveals Null Mutations in FAM161A as a Cause of Autosomal- Recessive Retinitis Pigmentosa  Dikla Bandah-Rozenfeld, Liliana Mizrahi-Meissonnier,
De Novo Loss-of-Function Mutations in SETD5, Encoding a Methyltransferase in a 3p25 Microdeletion Syndrome Critical Region, Cause Intellectual Disability 
A Nonsense Mutation in PDE6H Causes Autosomal-Recessive Incomplete Achromatopsia  Susanne Kohl, Frauke Coppieters, Françoise Meire, Simone Schaich, Susanne.
Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest  Yao Xu, Yingli Shi, Jing Fu, Min Yu, Ruizhi Feng, Qing Sang, Bo Liang,
A New Lamin A Mutation Associated with Acrogeria Syndrome
Recessive Mutations of the Gene TRPM1 Abrogate ON Bipolar Cell Function and Cause Complete Congenital Stationary Night Blindness in Humans  Zheng Li,
Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects  Konstantinos Nikopoulos, Pietro Farinelli, Basilio.
Evangelia S. Panagiotou, Carla Sanjurjo Soriano, James A
Molecular Therapy - Methods & Clinical Development
Autosomal-Recessive Early-Onset Retinitis Pigmentosa Caused by a Mutation in PDE6G, the Gene Encoding the Gamma Subunit of Rod cGMP Phosphodiesterase 
Volume 25, Issue 1, Pages (January 2017)
Alice E. Davidson, Ian D. Millar, Jill E
A Truncating Mutation of TRAPPC9 Is Associated with Autosomal-Recessive Intellectual Disability and Postnatal Microcephaly  Ganeshwaran H. Mochida, Muhammad.
Mutations in ARL2BP, Encoding ADP-Ribosylation-Factor-Like 2 Binding Protein, Cause Autosomal-Recessive Retinitis Pigmentosa  Alice E. Davidson, Nele.
Volume 4, Issue 6, Pages (December 2001)
A Mutation in ZNF513, a Putative Regulator of Photoreceptor Development, Causes Autosomal-Recessive Retinitis Pigmentosa  Lin Li, Naoki Nakaya, Venkata.
Volume 76, Issue 6, Pages (December 2012)
Volume 19, Issue 2, Pages (February 2011)
S. Amer Riazuddin, Amber Shahzadi, Christina Zeitz, Zubair M
RBPJ Mutations Identified in Two Families Affected by Adams-Oliver Syndrome  Susan J. Hassed, Graham B. Wiley, Shaofeng Wang, Ji-Yun Lee, Shibo Li, Weihong.
The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina  Sophie M. Raymond, Ian J. Jackson  Current Biology 
(case 6)  (A) Fundus photography showing subtle discrete areas of RPE atrophy (green areas). (case 6)  (A) Fundus photography showing subtle discrete areas.
Volume 4, Issue 5, Pages (November 2001)
Camiel J. F. Boon, B. Jeroen Klevering, Carel B. Hoyng, Marijke N
Mutations in the Gene KCNV2 Encoding a Voltage-Gated Potassium Channel Subunit Cause “Cone Dystrophy with Supernormal Rod Electroretinogram” in Humans 
Autosomal-Dominant Woolly Hair Resulting from Disruption of Keratin 74 (KRT74), a Potential Determinant of Human Hair Texture  Yutaka Shimomura, Muhammad.
Biallelic Mutations in PATL2 Cause Female Infertility Characterized by Oocyte Maturation Arrest  Biaobang Chen, Zhihua Zhang, Xiaoxi Sun, Yanping Kuang,
Volume 17, Issue 5, Pages (May 2009)
Strand and Cell Type-specific Function of microRNA-126 in Angiogenesis
Volume 23, Issue 2, Pages (February 2015)
J. Fielding Hejtmancik, Xiaodong Jiao, Anren Li, Yuri V
Mutations in SPATA7 Cause Leber Congenital Amaurosis and Juvenile Retinitis Pigmentosa  Hui Wang, Anneke I. den Hollander, Yalda Moayedi, Abuduaini Abulimiti,
The Primordial Growth Disorder 3-M Syndrome Connects Ubiquitination to the Cytoskeletal Adaptor OBSL1  Dan Hanson, Philip G. Murray, Amit Sud, Samia A.
IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response
Molecular Therapy - Methods & Clinical Development
Absence of a retinal phenotype in CIB2−/− mice
Volume 8, Issue 2, Pages (August 2003)
Volume 22, Issue 9, Pages (September 2014)
Volume 20, Issue 4, Pages (April 2012)
Mutations in CNNM4 Cause Recessive Cone-Rod Dystrophy with Amelogenesis Imperfecta  Bozena Polok, Pascal Escher, Aude Ambresin, Eliane Chouery, Sylvain.
Volume 25, Issue 4, Pages (April 2017)
Volume 27, Issue 11, Pages e3 (June 2019)
Mutation of CERKL, a Novel Human Ceramide Kinase Gene, Causes Autosomal Recessive Retinitis Pigmentosa (RP26)  Miquel Tuson, Gemma Marfany, Roser Gonzàlez-Duarte 
A Truncating Mutation of TRAPPC9 Is Associated with Autosomal-Recessive Intellectual Disability and Postnatal Microcephaly  Ganeshwaran H. Mochida, Muhammad.
Presentation transcript:

Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa Gavin Arno, Smriti A. Agrawal, Aiden Eblimit, James Bellingham, Mingchu Xu, Feng Wang, Christina Chakarova, David A. Parfitt, Amelia Lane, Thomas Burgoyne, Sarah Hull, Keren J. Carss, Alessia Fiorentino, Matthew J. Hayes, Peter M. Munro, Ralph Nicols, Nikolas Pontikos, Graham E. Holder Graeme Black, Georgina Hall, Stuart Ingram, Rachel Gillespie, Forbes Manson, Panagiotis Sergouniotis, Chris Inglehearn, Carmel Toomes, Manir Ali, Martin McKibbin, James Poulter, Kamron Khan, Emma Lord, Andrea Nemeth, Susan Downes, Jing Yu, Stefano Lise, Gavin Arno, Alessia Fiorentino, Nikos Ponitkos, Vincent Plagnol, Michel Michaelides, Alison J. Hardcastle, Michael E. Cheetham, Andrew R. Webster, Veronica van Heyningen, Chinwe Asomugha, F. Lucy Raymond, Anthony T. Moore, Vincent Plagnol, Michel Michaelides, Alison J. Hardcastle, Yumei Li, Catherine Cukras, Andrew R. Webster, Michael E. Cheetham, Rui Chen Gavin Arno, Smriti A. Agrawal, Aiden Eblimit, James Bellingham, Mingchu Xu, Feng Wang, Christina Chakarova, David A. Parfitt, Amelia Lane, Thomas Burgoyne, Sarah Hull, Keren J. Carss, Alessia Fiorentino, Matthew J. Hayes, Peter M. Munro, Ralph Nicols, Nikolas Pontikos, Graham E. Holder Graeme Black, Georgina Hall, Stuart Ingram, Rachel Gillespie, Forbes Manson, Panagiotis Sergouniotis, Chris Inglehearn, Carmel Toomes, Manir Ali, Martin McKibbin, James Poulter, Kamron Khan, Emma Lord, Andrea Nemeth, Susan Downes, Jing Yu, Stefano Lise, Gavin Arno, Alessia Fiorentino, Nikos Ponitkos, Vincent Plagnol, Michel Michaelides, Alison J. Hardcastle, Michael E. Cheetham, Andrew R. Webster, Veronica van Heyningen, Chinwe Asomugha, F. Lucy Raymond, Anthony T. Moore, Vincent Plagnol, Michel Michaelides, Alison J. Hardcastle, Yumei Li, Catherine Cukras, Andrew R. Webster, Michael E. Cheetham, Rui Chen  The American Journal of Human Genetics  Volume 99, Issue 6, Pages 1305-1315 (December 2016) DOI: 10.1016/j.ajhg.2016.10.008 Copyright © 2016 The Authors Terms and Conditions

Figure 1 Autosomal-Recessive RP Families and Associated REEP6 Variants (A) Pedigrees of all families with RP in this study (families A to E). Proband II.1 from family A is compound heterozygous for REEP6 variants (M1/M2). All other affected individuals were homozygous for the respective REEP6 variants indicated (M3, M4, M5, M6). M3 c.−5835_115+936delinsAC027307.5:79083_79240inv is abbreviated to c.−5835_115+936delins. (B) REEP6 gene structure with nucleotide positions for M1 to M6 mapped on to exons (E1–E6). Exon 5 is present only in isoform REEP6.1 (absent from REEP6.2). Protein structure of REEP6.1 and REEP6.2 with position of the corresponding mutations indicated. (C) Sequence reads from individual A-II:1 aligned against + strand of hg19 showing heterozygous mutations in REEP6. Both mutations are in exon 4: c.T404C (p.Ala150Profs∗2) and c.448delG (p.Leu135Pro) are in trans. The American Journal of Human Genetics 2016 99, 1305-1315DOI: (10.1016/j.ajhg.2016.10.008) Copyright © 2016 The Authors Terms and Conditions

Figure 2 Clinical Findings for Individuals with Autosomal-Recessive RP Harboring REEP6 Variants (A) Retinal imaging of the left eye of individual II:1 at age 18 years from family A. (B) Retinal imaging of the left eye of individual II:8 at age 32 years from family B. (C) Right eye retinal imaging of individual II:5 at age 54 years from family D. (D) Retinal imaging of the right eye of individual II:4 from family E. Fundus imaging, fundus autofluorescence imaging, and optical coherence tomography (OCT) scan reveal typical retinitis pigmentosa features in all affected individuals. Color fundus photographs demonstrate severely constricted retinal arterioles, mid-peripheral retinal pigment epithelium (RPE) atrophy, retinal atrophy within and extending outward of vascular arcades, and intraretinal pigmented spicules. Fundus autofluorescence imaging demonstrates a hyperautofluorescent ring around fovea and areas of circumscribed hypoautofluorescence within and extending outward of vascular arcades. OCT demonstrates atrophy of the outer retina with small bands of retained photoreceptors (arrows) that correspond to the areas within the para-foveal rings. The American Journal of Human Genetics 2016 99, 1305-1315DOI: (10.1016/j.ajhg.2016.10.008) Copyright © 2016 The Authors Terms and Conditions

Figure 3 Expression and Localization of REEP6 in Human iPSC Photoreceptors (A) Reverse-transcription PCR analysis of REEP6.1 and 6.2 isoforms in control adult fibroblasts (fibs) and control BJ optic cups during different weeks (wk) of photoreceptor differentiation. GAPDH used a loading control. (B) Maturing rhodopsin-positive rod cells (green) co-express REEP6 (red) in the IS and cell body (CB). At a later stage of development, mature rods develop rhodopsin-laden outer segments (green) in which REEP6 staining (red) is not detectable despite its continued expression in the IS and CB. (C) REEP6 (red) is not detectable in maturing cones, expressing cone arrestin (green). Mature cones (green) remain REEP6 (red) negative at this stage of development. Nuclei are counter-stained with DAPI (blue). (D) ER localization of REEP6.1. REEP6.1 WT (green) was expressed in SK-N-SH cells, stained with anti-REEP6, and counterstained with anti-KDEL (red). Scale bars represent 10 μm. The American Journal of Human Genetics 2016 99, 1305-1315DOI: (10.1016/j.ajhg.2016.10.008) Copyright © 2016 The Authors Terms and Conditions

Figure 4 Reep6L135P/L135P Mutant Mice Exhibit Photoreceptor Degeneration (A) Histological analysis of retinal sections from Reep6+/L135P (left) and Reep6L135P/L135P (right) mice was performed at 4 months and 6 months of age. Reep6+/L135P retina shows normal layered organization compared to the Reep6L135P/L135P retina that shows moderate thinning of the outer nuclear layer (ONL) at 4 months and marked thinning at 6 months of age. “INL” indicates inner nuclear layer. Scale bars represent 40 μm. (B) TEM images of P20 and 6-month-old retina from Reep6+/L135P control retina and Reep6L135P/L135P mutant retina shows thinning of ONL, outer segment (OS), and inner segment (IS) at 6 months of age indicative of progressive retinal degeneration. Scale bars represent 2 μm (top) and 10 μm (bottom). (C) Quantitative evaluation of scotopic a-wave and b-wave and photopic b-wave amplitude data for 4-month-old Reep6+/L135P control retina and Reep6L135P/L135P mutant mice. NS indicates not significant, ∗∗significant at p < 0.01, ∗∗∗significant at p < 0.001. The American Journal of Human Genetics 2016 99, 1305-1315DOI: (10.1016/j.ajhg.2016.10.008) Copyright © 2016 The Authors Terms and Conditions