Recreational Exponentiation

Slides:



Advertisements
Similar presentations
Add or subtract 1. (x 2 + 4x – 1) + (5x 2 – 6x + 4) 2. (5y 2 – 9y + 1) – (7y 2 – 8y – 6) Find the product 3.(x – 6)(3x + 4) 4.(2x + 5)(3x + 4) 6x 2 – 2x.
Advertisements

COMP 170 L2 Page 1 L03: Binomial Coefficients l Purpose n Properties of binomial coefficients n Related issues: the Binomial Theorem and labeling.
Chapter 5.2 Factoring by Grouping. 3y (2x – 7)( ) (2x – 7) (2x – 7) – 8 3y 1. Factor. GCF = (2x – 7) Find the GCF. Divide each term by the GCF. (2x –
The binomial theorem 1 Objectives: Pascal’s triangle Coefficient of (x + y) n when n is large Notation: ncrncr.
COMP 170 L2 Page 1 L03: Binomial Coefficients l Purpose n Properties of binomial coefficients n Related issues: the Binomial Theorem and labeling.
Section 5.1 Polynomials Addition And Subtraction.
A BC D Let ABCD be a quadrilateral. Join AC. Clearly, ∠ 1 + ∠ 2 = ∠ A (i) And, ∠ 3 + ∠ 4 = ∠ C (ii) We know that the sum of the angles.
Do Now: Evaluate each expression for x = -2. Aim: How do we work with polynomials? 1) -x + 12) x ) -(x – 6) Simplify each expression. 4) (x + 5)
2.4 Use the Binomial Theorem Test: Friday.
Drill #17 Simplify each expression.. Drill #18 Simplify each expression.
The 3 F words Fractions, FOIL and Factoring. Fractions Addition get a common denominator Factor all denominators to help find LCD Multiply both numerator.
The Binomial Theorem Lecture 29 Section 6.7 Mon, Apr 3, 2006.
Adding & Subtracting Polynomials
5.3Product of Two Binomials. Remember! Powers/Exponents: Distributing:
Chapter 9.1 Notes: Add and Subtract Polynomials Goal: You will add and subtract polynomials.
13.01 Polynomials and Their Degree. A polynomial is the sum or difference of monomials. x + 3 Examples: Remember, a monomial is a number, a variable,
2.2 Warm Up Find the sum or difference. 1. (2x – 3 + 8x²) + (5x + 3 – 8x²) 2. (x³ - 5x² - 4x) – (4x³ - 3x² + 2x – 8) 3. (x – 4) – (5x³ - 2x² + 3x – 11)
2.3 Factor and Solve Polynomial Expressions Pg. 76.
Polynomials. Polynomial Term Binomial Trinomial 1 or more monomials combined by addition or subtraction each monomial in a polynomial polynomial with.
Adding and subtracting polynomials. Types of polynomials Monomial Binomial Trinomial Polynomial 1 2x 7xy⁵ -12a + b w - m² a² + x⁴ - n³ x + d – 3y + m⁸.
Drill #29 Simplify each expression.. Drill #30 Simplify each expression.
Beyond FOIL Alternate Methods for Multiplying and Factoring Polynomials.
Multiplying Binomials
Beyond FOIL Alternate Methods for Multiplying and Factoring Polynomials.
Objective: Students will use proportional parts of triangles and divide a segment into parts. S. Calahan 2008.
Pascal’s Triangle and the Binomial Theorem (x + y) 0 = 1 (x + y) 1 = 1x + 1y (x + y) 2 = 1x 2 + 2xy + 1y 2 (x + y) 3 = 1x 3 + 3x 2 y + 3xy 2 +1 y 3 (x.
Objective - To add and subtract polynomials. Monomial - A single term. A group of numbers and/or variables tied together by multiplication or division.
Aim: How do we factor the trinomial in the form of Do Now: Factor the following 1. x 2 – 6x x 2 – 8x – x x + 10.
Determine the sequence of genes along a chromosome based on the following recombination frequencies A-C 20% A-D 10% B-C 15% B-D 5%
Copyright © 2014, 2010, and 2006 Pearson Education, Inc. Chapter 4 Polynomials.
Do Now: Evaluate each expression for x = -2. Aim: How do we work with polynomials? 1) -x + 12) x ) -(x – 6) Simplify each expression. 4) (x + 5)
Add and Subtract Polynomials Lesson 9.1 OBJ: to add and subtract polynomials.
Adding and subtracting polynomials 1L interpret expressions that represent a quantity in terms of its context.
南亚和印度.
Lecture 34 Section 6.7 Wed, Mar 28, 2007
How do I Multiply Polynomials? How do I use Binomial Expansion?
Polynomials and Polynomial Functions
Homework Questions? Daily Questions: How do I Multiply Polynomials?
Classifying, Adding, and Subtracting Polynomials
5.2 Polynomials Objectives: Add and Subtract Polynomials
The Binomial Theorem.
Use the Binomial Theorem
Use the Binomial Theorem
A Number as a Product of Prime Numbers
= 12x4 + 20x2 = 6x3 + 7x2 – x = – 16x5 + 72x4 = 24x3 – 6x2 + 48x
The Binomial Theorem.
Lesson 5.3 Operations with Polynomials
Polynomials.
تصنيف التفاعلات الكيميائية
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Use the Binomial Theorem
Adding and Subtracting Polynomials
Classifying, Adding, and Subtracting Polynomials
Polynomials.
Polynomials.
How do I Multiply Polynomials? How do I use Binomial Expansion?
Combinatorics.
Homework Questions? Daily Questions: How do I Multiply Polynomials?
Classifying, Adding, and Subtracting Polynomials
Honors Geometry.
Objectives Identify, evaluate, add, and subtract polynomials.
Lecture 29 Section 6.7 Thu, Mar 3, 2005
Let’s Review Functions
The Triangle Inequality
4.1 Introduction to Polynomials
Exercise Make up a fifth-degree monomial with two variables.
10.5 Permutations and Combinations.
Pythagoras theorem statement
Do Now: Aim: How do we work with polynomials?
Presentation transcript:

Recreational Exponentiation by Paul Kinion Paul.Kinion@rctc.edu

Recreational Exponentiation Theorem For any Natural number R, if f(i), i = 1, 2, …, R, is a frequency distribution with 𝑖=1 𝑅 𝑓 𝑖 =𝑁 , then 𝑁 𝑛 = 𝐴𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑠, 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛, 𝑤𝑖𝑡ℎ 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑛 𝑠 1 , 𝑠 2 , …, 𝑠(𝑅) 𝑖=1 𝑅 𝑓 𝑖 𝑠 𝑖 It is assumed 0 0 =1.

Multinomial Coefficients Provided 𝑘 1 + 𝑘 2 +…+ 𝑘 𝑅 =n, multinomial coefficients can be calculated by 𝑛 𝑘 1 , 𝑘 2 ,…, 𝑘 𝑅 = 𝑛! 𝑘 1 ! 𝑘 2 !… 𝑘 𝑅 !

Example: 5 3 Let R = 4, and f = (1, 2, 1, 1). The first step is to list all distributions for samples of size 3. The “Combinatorics Tree” starts with (3, 0, 0, 0) and ends with (0, 0, 0, 3).

Combinatorics Tree (3, 0, 0, 0) (2, 1, 0, 0) (1, 2, 0, 0) (2, 0, 1, 0) (0, 3, 0, 0) (1, 1, 1, 0) (2, 0, 0, 1) (0, 2, 1, 0) (1, 0, 2, 0) (1, 1, 0, 1) (0, 1, 2, 0) (0, 2, 0, 1) (1, 0, 1, 1) (0, 0, 3, 0) (0, 1, 1, 1) (1, 0, 0, 2) (0, 0, 2, 1) (0, 1, 0, 2) (0, 0, 1, 2) (0, 0, 0, 3)

The “one bumps” (3, 0, 0, 0) (2, 1, 0, 0) (1, 2, 0, 0) (0, 3, 0, 0)

The “two bumps” (3, 0, 0, 0) (2, 1, 0, 0) (1, 2, 0, 0) (2, 0, 1, 0) (0, 3, 0, 0) (1, 1, 1, 0) (0, 2, 1, 0) (1, 0, 2, 0) (0, 1, 2, 0) (0, 0, 3, 0)

The “three bumps” (3, 0, 0, 0) (2, 1, 0, 0) (1, 2, 0, 0) (2, 0, 1, 0) (0, 3, 0, 0) (1, 1, 1, 0) (2, 0, 0, 1) (0, 2, 1, 0) (1, 0, 2, 0) (1, 1, 0, 1) (0, 1, 2, 0) (0, 2, 0, 1) (1, 0, 1, 1) (0, 0, 3, 0) (0, 1, 1, 1) (1, 0, 0, 2) (0, 0, 2, 1) (0, 1, 0, 2) (0, 0, 1, 2) (0, 0, 0, 3)

Coefficients: 𝑛 𝑠 1 , 𝑠 2 , …, 𝑠(𝑅) (3, 0, 0, 0) 3 3 = 1 (2, 1, 0, 0) (1, 2, 0, 0) (2, 0, 1, 0) (0, 3, 0, 0) (1, 1, 1, 0) (2, 0, 0, 1) (0, 2, 1, 0) (1, 0, 2, 0) (1, 1, 0, 1) (0, 1, 2, 0) (0, 2, 0, 1) (1, 0, 1, 1) (0, 0, 3, 0) (0, 1, 1, 1) (1, 0, 0, 2) (0, 0, 2, 1) (0, 1, 0, 2) (0, 0, 1, 2) (0, 0, 0, 3)

Coefficients: 𝑛 𝑠 1 , 𝑠 2 , …, 𝑠(𝑅) (3, 0, 0, 0) 3 3 = 1 (2, 1, 0, 0) 3 2, 1 = 3 (1, 2, 0, 0) (2, 0, 1, 0) (0, 3, 0, 0) (1, 1, 1, 0) (2, 0, 0, 1) (0, 2, 1, 0) (1, 0, 2, 0) (1, 1, 0, 1) (0, 1, 2, 0) (0, 2, 0, 1) (1, 0, 1, 1) 3 1, 1, 1 = 6 (0, 0, 3, 0) (0, 1, 1, 1) (1, 0, 0, 2) (0, 0, 2, 1) (0, 1, 0, 2) (0, 0, 1, 2) (0, 0, 0, 3)

Coefficients: 𝑛 𝑠 1 , 𝑠 2 , …, 𝑠(𝑅) (3, 0, 0, 0) 1 (2, 1, 0, 0) 3 (1, 2, 0, 0) 3 (2, 0, 1, 0) 3 (0, 3, 0, 0) 1 (1, 1, 1, 0) 6 (2, 0, 0, 1) 3 (0, 2, 1, 0) 3 (1, 0, 2, 0) 3 (1, 1, 0, 1) 6 (0, 1, 2, 0) 3 (0, 2, 0, 1) 3 (1, 0, 1, 1) 6 (0, 0, 3, 0) 1 (0, 1, 1, 1) 6 (1, 0, 0, 2) 3 (0, 0, 2, 1) 3 (0, 1, 0, 2) 3 (0, 0, 1, 2) 3 (0, 0, 0, 3) 1

Coefficients Sum to 64, 4 3 not 5 3 (3, 0, 0, 0) 1 (2, 1, 0, 0) 3 (1, 2, 0, 0) 3 (2, 0, 1, 0) 3 (0, 3, 0, 0) 1 (1, 1, 1, 0) 6 (2, 0, 0, 1) 3 (0, 2, 1, 0) 3 (1, 0, 2, 0) 3 (1, 1, 0, 1) 6 (0, 1, 2, 0) 3 (0, 2, 0, 1) 3 (1, 0, 1, 1) 6 (0, 0, 3, 0) 1 (0, 1, 1, 1) 6 (1, 0, 0, 2) 3 (0, 0, 2, 1) 3 (0, 1, 0, 2) 3 (0, 0, 1, 2) 3 (0, 0, 0, 3) 1

𝑛 𝑠 1 , 𝑠 2 , …, 𝑠(𝑅) 𝑖=1 𝑅 𝑓 𝑖 𝑠 𝑖 (3, 0, 0, 0) 1 (2, 1, 0, 0) 3(2) (1, 2, 0, 0) 3(4) (2, 0, 1, 0) 3 (0, 3, 0, 0) 1(8) (1, 1, 1, 0) 6(2) (2, 0, 0, 1) 3 (0, 2, 1, 0) 3(4) (1, 0, 2, 0) 3 (1, 1, 0, 1) 6(2) (0, 1, 2, 0) 3(2) (0, 2, 0, 1) 3(4) (1, 0, 1, 1) 6 (0, 0, 3, 0) 1 (0, 1, 1, 1) 6(2) (1, 0, 0, 2) 3 (0, 0, 2, 1) 3 (0, 1, 0, 2) 3(2) (0, 0, 1, 2) 3 (0, 0, 0, 3) 1

5 3 = 𝐴𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑠, 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛, 𝑤𝑖𝑡ℎ 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑛 𝑠 1 , 𝑠 2 , …, 𝑠(𝑅) 𝑖=1 𝑅 𝑓 𝑖 𝑠 𝑖 = 125 (3, 0, 0, 0) 1 (2, 1, 0, 0) 6 (1, 2, 0, 0) 12 (2, 0, 1, 0) 3 (0, 3, 0, 0) 8 (1, 1, 1, 0) 12 (2, 0, 0, 1) 3 (0, 2, 1, 0) 12 (1, 0, 2, 0) 3 (1, 1, 0, 1) 12 (0, 1, 2, 0) 6 (0, 2, 0, 1) 12 (1, 0, 1, 1) 6 (0, 0, 3, 0) 1 (0, 1, 1, 1) 12 (1, 0, 0, 2) 3 (0, 0, 2, 1) 3 (0, 1, 0, 2) 6 (0, 0, 1, 2) 3 (0, 0, 0, 3) 1

Example: 3 5 Let R = 4, and f = (1, 0, 1, 1). The first step is to list all distributions for samples of size 5. The “Combinatorics Tree” starts with (5, 0, 0, 0) and ends with (0, 0, 0, 5).

Combinatorics Tree (5, 0, 0, 0) (4, 0, 1, 0) (3, 0, 2, 0) (4, 0, 0, 1) (2, 0, 3, 0) (3, 0, 1, 1) (1, 0, 4, 0) (2, 0, 2, 1) (3, 0, 0, 2) (0, 0, 5, 0) (1, 0, 3, 1) (2, 0, 1, 2) (0, 0, 4, 1) (1, 0, 2, 2) (2, 0, 0, 3) (0, 0, 3, 2) (1, 0, 1, 3) (0, 0, 2, 3) (1, 0, 0, 4) (0, 0, 1, 4) (0, 0, 0, 5)

3 5 = 243 (5, 0, 0, 0) 1 (4, 0, 1, 0) 5 (3, 0, 2, 0) 10 (4, 0, 0, 1) 5 (2, 0, 3, 0) 10 (3, 0, 1, 1) 20 (1, 0, 4, 0) 5 (2, 0, 2, 1) 30 (3, 0, 0, 2) 10 (0, 0, 5, 0) 1 (1, 0, 3, 1) 20 (2, 0, 1, 2) 30 (0, 0, 4, 1) 5 (1, 0, 2, 2) 30 (2, 0, 0, 3) 10 (0, 0, 3, 2) 10 (1, 0, 1, 3) 20 (0, 0, 2, 3) 10 (1, 0, 0, 4) 5 (0, 0, 1, 4) 5 (0, 0, 0, 5) 1

Recreational Combination Theorem For any Natural number R, if f(i), i = 1, 2, …, R, is a frequency distribution with 𝑖=1 𝑅 𝑓 𝑖 =𝑁 , then 𝐶(𝑁, 𝑛)= 𝐴𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑠, 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛, 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑖=1 𝑅 𝐶(𝑓 𝑖 ,𝑠(𝑖 ))

Example: 𝐶(5, 3) Let R = 4, and f = (1, 2, 1, 1). The first step is to list all distributions for samples of size 3. The “Combinatorics Tree” starts with (1, 2, 0, 0) and ends with (0, 1, 1, 1).

Combinatorics Tree (1, 2, 0, 0) (1, 1, 1, 0) (0, 2, 1, 0) (1, 1, 0, 1) (0, 2, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

Coefficients: 𝑖=1 𝑅 𝐶(𝑓 𝑖 ,𝑠 𝑖 ) (1, 2, 0, 0) C(1, 1) C(2, 2) C(1, 0) C(1, 0) = 1 (1, 1, 1, 0) C(1, 1) C(2, 1) C(1, 1) C(1, 0) = 2 (0, 2, 1, 0) C(2, 2) C(1, 1) = 1 (1, 1, 0, 1) C(1, 1) C(2, 1) C(1, 1) = 2 (0, 2, 0, 1) C(2, 2) C(1, 1) = 1 (1, 0, 1, 1) C(1, 1) C(1, 1) C(1, 1) = 1 (0, 1, 1, 1) C(2, 1) C(1, 1) C(1, 1) = 2 They sum to 10 = C(5,3).

Example: 𝐶(6, 3) Let R = 2, and f = (2, 4). The first step is to list all distributions for samples of size 3. The “Combinatorics Tree” starts with (2, 1) and ends with (0, 3).

Combinatorics Tree (2, 1) (1, 2) (0, 3)

Coefficients (2, 1) C(2, 2) C(4, 1) = 4 (1, 2) C(2, 1) C(4, 2) = 12 (0, 3) C(2, 0) C(4, 3) = 4 They sum to 20 = C(6, 3)

Left Clicks on Distributions   Left Clicks on Distributions N = 8 n = 4 8 4 = 4096 Correction: Divide Mean of Means and Standard Error by sample size Mean 10/4 = 2.5 SE = 1.73205/4 = 0.4330125

S s SE Mean

Pascal’s Triangle Level 0 1 Level 1 1 1 Level 2 1 2 1 Level 3 1 3 3 1

Level 4 of Pascal’s Triangle 1 4 6 4 1 (𝑎+𝑏) 4 = 1 𝑎 4 + 4 𝑎 3 𝑏+ 6 𝑎 2 𝑏 2 + 4 𝑎𝑏 3 +1 𝑏 4 𝑎 = 10, 𝑏 = 1 11 4 = 14,641

Level 5 of Pascal’s Triangle 1 5 10 10 5 1 Double digits 01 05 10 10 05 01 𝑎 = 100, 𝑏 = 1 101 5 = 10,510,100,501

Level 5 of Pascal’s Triangle 1 5 10 10 5 1 Triple digits 001 005 010 010 005 001 𝑎 = 1000, 𝑏 = 1 1001 5 = 1,005,010,010,005,001

Binomial Coefficients 𝑛 𝑘 = 𝑛! 𝑘! 𝑛−𝑘 ! 𝑛 𝑘 = 𝑛−1 𝑘−1 + 𝑛−1 𝑘

Multinomial Coefficients Provided 𝑘 1 + 𝑘 2 +…+ 𝑘 𝑅 =n, multinomial coefficients can be calculated by 𝑛 𝑘 1 , 𝑘 2 ,…, 𝑘 𝑅 = 𝑛! 𝑘 1 ! 𝑘 2 !… 𝑘 𝑅 !

Multinomial Coefficients For n > 0, they satisfy the recurrence relation 𝑛 𝑘 1 , 𝑘 2 ,…, 𝑘 𝑅 = 𝑟=1 𝑅 𝑛−1 ! 𝑘 1 ! 𝑘 2 !… 𝑘 𝑟 −1 ! … 𝑘 𝑅 !

Binomial Coefficients Provided 𝑘 1 + 𝑘 2 =n, binomial coefficients can be calculated by 𝑛 𝑘 1 , 𝑘 2 = 𝑛! 𝑘 1 ! 𝑘 2 ! and satisfy the recurrence relation 𝑛 𝑘 1 , 𝑘 2 = 𝑛−1 ! (𝑘 1 −1)! 𝑘 2 ! + 𝑛−1 ! 𝑘 1 ! 𝑘 2 −1 ! for n > 0

Pascal’s Ray Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 1 1a 1 𝑎 2 1 𝑎 3 1 𝑎 4 1 𝑎 5

Level 4 of Pascal’s Ray 1 (𝑎) 4 = 𝑎 4 𝑎 = 1 1 4 = 1

Monomial Coefficients Provided 𝑘=n, monomial coefficients can be calculated by 𝑛 𝑘 = 𝑛! 𝑘! = 1 and satisfy the recurrence relation 𝑛 𝑘 = 𝑛−1 𝑘−1 = 1 for n > 0

Pascal’s Point 1 level 0 “It is assumed 0 0 =1.”

Pascal’s Pyramid level 0 1 1𝑐 level 1 1𝑎 1b level 2 1 𝑎 2 1 𝑐 2 2𝑎𝑏 2𝑏𝑐 1 𝑐 3 level 3 1 𝑎 3 3 𝑏𝑐 2 3 𝑎 2 𝑏 3 𝑎𝑏 2 3 𝑏 2 𝑐 1 𝑏 3 1 𝑏 2

Level 2 of Pascal’s Pyramid 1 𝑎 2 2𝑎𝑐 1 𝑐 2 2𝑎𝑏 2𝑏𝑐 1 𝑏 2

(𝑎+𝑏+𝑐) 2 = 𝑎 2 + 𝑏 2 + 𝑐 2 +2(𝑎𝑏+𝑎𝑐+𝑏𝑐) (𝑎+𝑏+𝑐) 2 = 𝑎 2 + 𝑏 2 + 𝑐 2 +2(𝑎𝑏+𝑎𝑐+𝑏𝑐) 1 𝑎 2 2𝑎𝑐 1 𝑐 2 2𝑎𝑏 2𝑏𝑐 1 𝑏 2

(111) 2 =12,321 a = 100 b = 10 c = 1 1 𝑎 2 2𝑎𝑐 1 𝑐 2 2𝑎𝑏 2𝑏𝑐 1 𝑏 2 + (coefficients) 1 2 3 2 1

Levels 2 & 3 of Pascal’s Pyramid 1 𝑎 3 3 𝑎 2 𝑐 3 𝑎𝑐 2 1 𝑐 3 1 𝑎 2 2𝑎𝑐 1 𝑐 2 2𝑎𝑏 2𝑏𝑐 1 𝑏 2 3𝑎 2 𝑏 3𝑏𝑐 2 6 3𝑎𝑏 2 3𝑏 2 𝑐 1 𝑏 3

Level 3 of Pascal’s Pyramid 1 𝑎 3 3 𝑎 2 𝑐 3 𝑎𝑐 2 1 𝑐 3 3𝑎 2 𝑏 3𝑏𝑐 2 6𝑎𝑏𝑐 3𝑎𝑏 2 3𝑏 2 𝑐 1 𝑏 3

Level 3 of Pascal’s Pyramid 1 𝑎 3 3 𝑎 2 𝑐 3 𝑎𝑐 2 1 𝑐 3 3𝑎 2 𝑏 3𝑏𝑐 2 6𝑎𝑏𝑐 3𝑎𝑏 2 3𝑏 2 𝑐 1 𝑏 3

Level 3 of Pascal’s Pyramid 1 𝑎 3 3 𝑎 2 𝑐 3 𝑎𝑐 2 1 𝑐 3 12 12 3𝑎 2 𝑏 3𝑏𝑐 2 6𝑎𝑏𝑐 12 3𝑎𝑏 2 3𝑏 2 𝑐 1 𝑏 3

Level 4 of Pascal’s Pyramid 1 1 4 6 4 4 4 12 12 6 6 12 4 4 1

Level 4 of Pascal’s Pyramid 1 4 6 4 1 20 20 30 4 4 12 12 30 30 6 6 12 20 4 4 1

Level 5 of Pascal’s Pyramid 1 5 10 10 5 1 5 5 20 30 20 10 10 30 30 10 10 20 5 5 1

01 05 15 30 45 51 45 30 15 05 01 1 5 10 10 5 1 5 5 20 30 20 10 10 30 30 10 10 20 5 5 1

(10101) 5 =105,153,045,514,530,150,501 1 5 10 10 5 1 5 5 20 30 20 10 10 a = 10000 b = 100 c = 1 30 30 10 10 20 5 5 1

Trinomial Theorem Example (a+b+c) 5 =? 5 = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

Trinomial Coefficients 5 5 = 1 5 3,1,1 = 20 5 4,1 = 5 5 2,2,1 = 30 5 3,2 = 10

Trinomial Theorem Example (𝑎+𝑏+𝑐) 5 =? 𝑎 5 + 𝑏 5 + 𝑐 5 + 5( 𝑎 4 𝑏 + 𝑎 4 𝑐 + 𝑎𝑏 4 + 𝑏 4 𝑐 + 𝑎𝑐 4 + 𝑏𝑐 4 )+ 10( 𝑎 3 𝑏 2 + 𝑎 3 𝑐 2 + 𝑎 2 𝑏 3 + 𝑏 3 𝑐 2 + 𝑎 2 𝑐 3 + 𝑏 2 𝑐 3 )+ 20( 𝑎 3 𝑏𝑐+ 𝑎 𝑏 3 𝑐+ 𝑎𝑏𝑐 3 )+ 30( 𝑎 2 𝑏 2 𝑐+ 𝑎 2 𝑏 𝑐 2 + 𝑎 𝑏 2 𝑐 2 )

Multinomial Theorem Example (a+b+c+d) 3 =? 3 = 3 3 3 = 1 = 2 + 1 3 2, 1 = 3 = 1 + 1 + 1 3 1 ,1 ,1 = 6

Multinomial Theorem Example (a+b+c+d) 3 =? 𝑎 3 + 𝑏 3 + 𝑐 3 + 𝑑 3 + 3( 𝑎 2 𝑏 + 𝑎 2 𝑐 + 𝑎 2 𝑑 + 𝑎𝑏 2 + 𝑏 2 𝑐 + 𝑏 2 𝑑 + 𝑎𝑐 2 + 𝑏𝑐 2 + 𝑐 2 𝑑 + 𝑎𝑑 2 + 𝑏𝑑 2 + 𝑐𝑑 2 )+ 6(𝑎𝑏𝑐+𝑎𝑏𝑑+𝑎𝑐𝑑+𝑏𝑐𝑑)

0th Level of the 4th Dimensional Hyper-Pascal’s Pyramid 1

0th & 1st Level 1a 1d 1 1b 1c

1st Level 1a 1d 1b 1c

1st & 2nd Level 1 𝑎 2 2ad 2ab 2ac 2bd 2bc 1 𝑏 2 1 𝑐 2 2cd 1 𝑑 2

2nd Level of the 4th Dimensional Hyper-Pascal’s Pyramid 1 𝑎 2 2ad 2ab 2ac 2bd 2bc 1 𝑏 2 1 𝑐 2 2cd 1 𝑑 2

(1111) 2 = 1,234,321 1 𝑎 2 2ad 2ab 2ac 2bd 2bc 1 𝑏 2 1 𝑐 2 2cd + (coefficients) 1 𝑑 2 1 2 3 4 3 2 1

(111,111,111) 2 = 12,345,678,987,654,321 How About Ten Ones? (1,010,101,010,101,010,101) 2 = 1020304050607080910090807060504030201

Third Level of the 4th Dimensional Hyper-Pascal’s Pyramid (3,0,0,0) (2,1,0,0) (1,2,0,0) (0,3,0,0) (0,2,1,0) (0,1,2,0) (0,0,3,0) (0,0,2,1) (0,0,1,2) (0,0,0,3) (2,0,1,0) (1,1,1,0) (1,0,2,0) (0,2,0,1) (0,1,1,1) (0,1,0,2) (2,0,0,1) (1,1,0,1) (1,0,1,1) (1,0,0,2)

Multinomial Coefficients (3,0,0,0) (2,1,0,0) (1,2,0,0) (0,3,0,0) (0,2,1,0) (0,1,2,0) (0,0,3,0) (0,0,2,1) (0,0,1,2) (0,0,0,3) 1 3 3 1 3 3 1 3 3 1 (2,0,1,0) (1,1,1,0) (1,0,2,0) (0,2,0,1) (0,1,1,1) (0,1,0,2) 3 6 3 3 6 3 (2,0,0,1) (1,1,0,1) (1,0,1,1) (1,0,0,2) 3 6 6 3 3 3 = 1 3 2,1 = 3 3 1,1,1 = 6

Third Level of the 4th Dimensional Hyper-Pascal’s Pyramid (3,0,0,0) (2,1,0,0) (1,2,0,0) (0,3,0,0) (0,2,1,0) (0,1,2,0) (0,0,3,0) (0,0,2,1) (0,0,1,2) (0,0,0,3) 1 3 3 1 3 3 1 3 3 1 (2,0,1,0) (1,1,1,0) (1,0,2,0) (0,2,0,1) (0,1,1,1) (0,1,0,2) 3 6 3 3 6 3 (2,0,0,1) (1,1,0,1) (1,0,1,1) (1,0,0,2) + 3 6 6 3 (double digit) 01 03 06 10 12 12 10 06 03 01

Third Level of the 4th Dimensional Hyper-Pascal’s Pyramid (3,0,0,0) (2,1,0,0) (1,2,0,0) (0,3,0,0) (0,2,1,0) (0,1,2,0) (0,0,3,0) (0,0,2,1) (0,0,1,2) (0,0,0,3) 1 3 3 1 3 3 1 3 3 1 (2,0,1,0) (1,1,1,0) (1,0,2,0) (0,2,0,1) (0,1,1,1) (0,1,0,2) 3 6 3 3 6 3 (2,0,0,1) (1,1,0,1) (1,0,1,1) (1,0,0,2) + 3 6 6 3 (double digit) 01 03 06 10 12 12 10 06 03 01 1,030,610,121,210,060,301 = (1,010,101) 3

References Paul Kinion & Dustin Haxton’s Free Copy of eta: Sampling Distributions for Small Samples http://www.rctc.edu/academics/math/sdss.html https://en.wikipedia.org/wiki/Pascal%27s_pyramid https://en.wikipedia.org/wiki/Multinomial_theorem