Figure 3 Lipid droplet formation and expansion

Slides:



Advertisements
Similar presentations
Figure 1 Proposed risk stratification for patients with NAFLD
Advertisements

Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Low-grade inflammation in FGID
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Lipid droplet consumption
Tensing Up for Lipid Droplet Formation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Organs involved in coeliac-disease-associated autoimmunity
Figure 5 Exosomes for delivery of RNA interference therapeutics
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Suggested biopsy-avoiding diagnostic pathway for coeliac disease Figure 1 | Suggested biopsy-avoiding diagnostic pathway for coeliac disease.
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Figure 1 Definition and concept of ACLF
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Pseudorelaxation as a consequence of
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
different types of liver cells
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Histological pattern in ACLF
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 2 13C-octanoic acid gastric emptying breath test
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 5 Chrononutrition in the liver
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 High-resolution manometry studies performed
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Lipid droplets Current Biology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
The plant lipidome in human and environmental health
Figure 5 Systems biological model of IBS
Figure 4 Local species pools that contribute to the
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Open Questions in Lipid Droplet Biology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Lipid Droplets Finally Get a Little R-E-S-P-E-C-T
Figure 2 Classifications and appearance of CCAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
BRC Science Highlight Lipid droplets engineered for the production of terpenoids in plant leaves Objective Increase production of terpenoid bioproducts.
DisseCCTing Phospholipid Function in Lipid Droplet Dynamics
Presentation transcript:

Figure 3 Lipid droplet formation and expansion Figure 3 | Lipid droplet formation and expansion. a | Lipid droplets (LDs) consist of a neutral lipid core surrounded by a phospholipid monolayer. Proteins access the LD surface by relocalizing from the ER bilayer (class I) or from the cytosol (class II). b | LD formation begins with neutral lipid synthesis. The lipids accumulate in the ER bilayer to form a lens. c | Eventually, the bilayer deforms and causes the droplet to bud forming an initial LD (iLD). d | COPI can bud nano-LDs from the iLD, resulting in increased surface tension and reconnection of the iLD with the ER. This contact allows class I proteins to access the droplet, including GPAT4 and DGAT2. These enzymes are involved in triglyceride synthesis and result in LD growth, forming an expanding LD. Gluchowski, N. L. et al. (2017) Lipid droplets and liver disease: from basic biology to clinical implications Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.32