Chapter 3 outline 3.1 transport-layer services

Slides:



Advertisements
Similar presentations
CS 4284 Systems Capstone Networking Godmar Back.
Advertisements

Transport Layer 4 Slides from Kurose and Ross
Transport Layer 3-1 Transport services and protocols  provide logical communication between app processes running on different hosts  transport protocols.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
EEC-484/584 Computer Networks Lecture 6 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
Transport Layer3-1 Data Communication and Networks Lecture 6 Reliable Data Transfer October 12, 2006.
Announcement Project 1 due last night, how is that ? Project 2 almost ready, out tomorrow, will post online –Much harder than project 1, start early!
Announcement Project 1 due last night, how is that ? Homework 1 grade, comments out –Will be discussed in the next lecture Homework 2 out Project 2 almost.
Transport Layer3-1 Reliable Data Transfer. Transport Layer3-2 Principles of Reliable data transfer r important in app., transport, link layers r top-10.
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
3-1 Sect. 3.4 Principles of reliable data transfer Computer Networking: A Top Down Approach Featuring the Internet, 1 st edition. Jim Kurose, Keith Ross.
CPSC 441: Reliable Transport1 Reliable Data Transfer Instructor: Carey Williamson Office: ICT Class.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
1 Internet transport-layer protocols r reliable, in-order delivery (TCP) m congestion control m flow control m connection setup r unreliable, unordered.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture r Transport-layer services r Multiplexing and demultiplexing r Connectionless.
9/30/ /2/2003 The Transport Layer September 30-October 2, 2003.
1 Transport Layer goals: r understand principles behind transport layer services: m multiplexing/demultiplexing m reliable data transfer m flow control.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 
CSCI 3335: C OMPUTER N ETWORKS C HAPTER 3 T RANSPORT L AYER Vamsi Paruchuri University of Central Arkansas Some.
14-1 Last time □ Mobility in Cellular networks ♦ HLR, VLR, MSC ♦ Handoff □ Transport Layer ♦ Introduction ♦ Multiplexing / demultiplexing ♦ UDP.
Transport Layer 3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m sockets m reliable data transfer m.
CS 3830 Day 15 Introduction 1-1. Announcements r Quiz 3: Wednesday, Oct 10 r Prog3 due (in 1DropBox) on Wednesday, Oct 10 r Prog4: m Parts A and B m Work.
15-1 Last time □ Reliable Data Transfer ♦ Provide rdt over unreliable network layer ♦ FSM model ♦ rdt 1.0: rdt over reliable channels ♦ rdt 2.0: rdt over.
Transport Layer 3-1 From Computer Networking: A Top Down Approach Featuring the Internet by Jim Kurose, Keith Ross Addison-Wesley, A note on the use of.
rdt2.2: a NAK-free protocol
Part 3: Transport Layer: Reliable Data Transfer CSE 3461/5461 Reading: Section 3.4, Kurose and Ross 1.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 rdt2.1: sender, handles garbled ACK/NAKs Wait for call 0 from above sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_send(data)
Transport Layer 3-1 Chapter 3 outline 3.4 Principles of reliable data transfer.
September 24 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Part.
1 John Magee 10 February 2014 CS 280: Transport Layer: Reliable Data Transfer Most slides adapted from Kurose and Ross, Computer Networking 6/e Source.
Transport Layer Our goals:
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction 1 Lecture 11 Transport Layer (Reliable Data Transfer) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Chapter 3 Transport Layer
Chapter 3 Transport Layer
Chapter 3 outline 3.1 transport-layer services
Last time Reliable Data Transfer
Session 8 INST 346 Technologies, Infrastructure and Architecture
Advanced Networks Transport layer 1/2 Dr Vincent Gramoli | Lecturer
Reliable Data Transfer Reliable Data Transfer.
EEC-484/584 Computer Networks
rdt2.2: a NAK-free protocol
Transport Layer Our goals:
Chapter 3 outline 3.1 Transport-layer services
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
rdt2.2: a NAK-free protocol
rdt2.2: a NAK-free protocol
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
rdt2.2: a NAK-free protocol
EEC-484/584 Computer Networks
rdt2.2: a NAK-free protocol
EEC-484 Computer Networks
Chapter 3 Transport Layer
Never take life seriously. Nobody gets out alive anyway
Chapter 3: Transport Layer
EEC-484/584 Computer Networks
Chapter 3: Transport Layer
EEC-484/584 Computer Networks
Chapter 3: Transport Layer
Chapter 3 Transport Layer
rdt2.0: FSM specification
CS 5565 Network Architecture and Protocols
rdt2.2: a NAK-free protocol
Chapter 3: Transport Layer
Presentation transcript:

Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 principles of congestion control 3.7 TCP congestion control Transport Layer

Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics! Transport Layer

Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will lead complexity of reliable data transfer protocol (rdt) Transport Layer

Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Transport Layer

Reliable data transfer: getting started rdt_send(): called from above, (e.g., by app.). Passed data to deliver to receiver upper layer deliver_data(): called by rdt to deliver data to upper send side receive side udt_send(): called by rdt, to transfer packet over unreliable channel to receiver rdt_rcv(): called when packet arrives on rcv-side of channel Transport Layer

Reliable data transfer: getting started We will: incrementally develop sender, receiver sides of reliable data transfer protocol (rdt) consider only unidirectional data transfer but control info will flow on both directions! use finite state machines (FSM) to specify sender, receiver event causing state transition actions taken on state transition state: In a state, next state uniquely determined by next event state 1 state 2 event actions Transport Layer

rdt1.0:reliable transfer over a “reliable” channel underlying channel perfectly reliable no bit errors no loss of packets separate FSMs for sender, receiver: sender sends data into underlying channel receiver reads data from underlying channel Wait for call from above rdt_send(data) Wait for call from below rdt_rcv(packet) extract (packet,data) deliver_data(data) packet = make_pkt(data) udt_send(packet) sender receiver Transport Layer

rdt2.0: channel with bit errors underlying channel may flip bits in packet checksum to detect bit errors the question: how to recover from errors: acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): error detection receiver feedback: control msgs (ACK,NAK) rcvr->sender How do humans recover from “errors” during conversation? Transport Layer

rdt2.0: channel with bit errors underlying channel may flip bits in packet checksum to detect bit errors the question: how to recover from errors: acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): ARQ (Automatic Repeat reQuest) Protocol error detection feedback: control msgs (ACK,NAK) from receiver to sender when error detected, sender re-transmits the previous packet Transport Layer

rdt2.0: FSM specification rdt_send(data) sndpkt = make_pkt(data, checksum) udt_send(sndpkt) receiver rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for ACK or NAK Wait for call from above udt_send(NAK) rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) Wait for call from below L sender rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) stop and wait sender sends one packet, then waits for receiver response extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer

rdt2.0: operation with no errors rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for ACK or NAK Wait for call from above udt_send(NAK) rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) Wait for call from below L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer

rdt2.0: error scenario rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for ACK or NAK Wait for call from above udt_send(NAK) rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) Wait for call from below L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer

rdt2.0 has a fatal flaw! handling duplicates: what happens if ACK/NAK corrupted? sender doesn’t know what happened at receiver! can’t retransmit rightly  if sender retransmit a packet, the packet is possibly duplicate at receiver handling duplicates: sender retransmits current pkt if ACK/NAK corrupted sender adds sequence number to each pkt receiver discards (doesn’t deliver up) duplicate pkt Transport Layer

rdt2.1: sender, handles garbled ACK/NAKs rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isNAK(rcvpkt) ) Wait for ACK or NAK 0 Wait for call 0 from above udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt) L L Wait for ACK or NAK 1 Wait for call 1 from above rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isNAK(rcvpkt) ) rdt_send(data) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) udt_send(sndpkt) Transport Layer

rdt2.1: receiver, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt) sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt) sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt) Wait for 0 from below Wait for 1 from below rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq1(rcvpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) Not extract the data from rcvpkt Not extract the data from rcvpkt 고려할 사항 Receiver 는 성공적으로 ACK를 보냈는데, Sender에서 받은 ACK가 Corrupt 되었을 때 Receiver 가 받은 메시지가 Corrupt 되었을 때 Transport Layer

(a) Operation with no error rdt2.1: example Pak0 Ack Pak1 Ack Pak0 Ack (a) Operation with no error Transport Layer

rdt2.1: example NAK Pak1 Pak1 (b) Operation with Corrupted Packet Garbled Pak1 Pak1 Garbled NAK Ack Pak1 Pak1 Ack Ack (b) Operation with Corrupted Packet (c) Operation with Corrupted ACK/NAK Transport Layer

rdt2.1: discussion sender: seq # added to pkt two seq. #’s (0,1) will suffice. Why? must check if received ACK/NAK corrupted twice as many states state must “remember” whether “current” pkt has 0 or 1 seq. # receiver: must check if received packet is duplicate state indicates whether 0 or 1 is expected pkt seq # note: receiver can not know if its last ACK/NAK received OK at sender Transport Layer

rdt2.2: a NAK-free protocol same functionality as rdt2.1, using ACKs only instead of NAK, receiver sends ACK for the last pkt received successfully receiver must explicitly include seq # of pkt being ACKed into ACK duplicate ACK at sender results in same action as NAK: retransmit current pkt Duplicate ACK == NAK Transport Layer

rdt2.2: sender, receiver fragments Wait for call 0 from above sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_send(data) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,1) ) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) Wait for ACK 0 sender FSM fragment DupACK rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt, 1) L L Wait for ACK 1 Wait for call 1 from above rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt, 0) ) rdt_send(data) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) udt_send(sndpkt) DupACK Transport Layer

rdt2.2: sender, receiver fragments rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK0, chksum) udt_send(sndpkt) Wait for 0 from below rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq1(rcvpkt)) udt_send(sndpkt) receiver FSM fragment rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq0(rcvpkt)) Wait for 1 from below udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK1, chksum) udt_send(sndpkt) 고려할 사항 Receiver 는 성공적으로 ACK를 보냈는데, Sender에서 받은 ACK가 Corrupt 되었을 때 Receiver 가 받은 메시지가 Corrupt 되었을 때 Transport Layer

(a) Operation with no error rdt2.2: example Pak0 Ack0 Pak1 Ack1 Pak0 Ack0 (a) Operation with no error Transport Layer

rdt2.2: example Ack0 Pak1 Pak1 (b) Operation with Corrupted Packet Garbled Pak1 Pak1 Garbled Ack0 Ack1 Pak1 Pak1 Ack1 Ack1 (b) Operation with Corrupted Packet (c) Operation with Corrupted ACK/NAK Transport Layer

rdt3.0: channels with errors and “loss” new assumption: underlying channel can also lose packets (data, ACKs) checksum, seq. #, ACKs, retransmissions will be of help … but not enough approach: sender waits “reasonable” amount of time for ACK retransmits if no ACK received in this time if pkt (or ACK) just delayed (not lost): retransmission will be duplicate, but seq. #’s already handles this receiver must specify seq # of pkt being ACKed requires countdown timer Transport Layer

rdt3.0 sender L L L L rdt_send(data) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,1) ) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) L L Wait for call 0 from above Wait for ACK0 timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,1) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) stop_timer stop_timer Wait for ACK1 Wait for call 1 from above timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) L rdt_send(data) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,0) ) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) start_timer L Transport Layer

rdt3.0 in action sender receiver sender receiver send pkt0 send pkt0 rcv pkt0 rcv pkt0 send ack0 send ack0 ack0 ack0 rcv ack0 rcv ack0 send pkt1 pkt1 send pkt1 pkt1 X loss rcv pkt1 ack1 send ack1 rcv ack1 send pkt0 pkt0 timeout resend pkt1 rcv pkt0 ack0 send ack0 pkt1 rcv pkt1 ack1 send ack1 rcv ack1 send pkt0 pkt0 (a) no loss rcv pkt0 ack0 send ack0 (b) packet loss Transport Layer

(d) premature timeout/ delayed ACK rdt3.0 in action sender receiver sender receiver send pkt0 pkt0 rcv pkt0 send pkt0 pkt0 send ack0 rcv pkt0 ack0 rcv ack0 send ack0 ack0 send pkt1 pkt1 rcv ack0 rcv pkt1 send pkt1 pkt1 send ack1 rcv pkt1 ack1 ack1 X loss send ack1 timeout resend pkt1 timeout resend pkt1 pkt1 rcv pkt1 pkt1 send ack1 ack1 send pkt0 rcv ack1 pkt0 rcv pkt0 send ack0 ack0 rcv pkt1 (detect duplicate) (detect duplicate) ack1 send ack1 rcv ack1 send pkt0 pkt0 rcv pkt0 ack0 send ack0 (c) ACK loss (d) premature timeout/ delayed ACK Transport Layer

Performance of rdt3.0 rdt3.0 is correct, but performance stinks e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet: Dtrans = L R 8000 bits 109 bits/sec = 8 microsecs U sender: utilization – fraction of time sender busy sending 1000 Byte pkt every 30.008 msec -> 267kbps thrughput over 1 Gbps link network protocol limits the use of physical resources! Transport Layer

rdt3.0: stop-and-wait operation sender receiver first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R first packet bit arrives RTT last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R Transport Layer

Pipelined protocols pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver two generic forms of pipelined protocols: go-Back-N (GBN), selective repeat (SR) Transport Layer

Pipelining: increased utilization sender receiver first packet bit transmitted, t = 0 last bit transmitted, t = L / R first packet bit arrives RTT last packet bit arrives, send ACK last bit of 2nd packet arrives, send ACK last bit of 3rd packet arrives, send ACK ACK arrives, send next packet, t = RTT + L / R 3-packet pipelining increases utilization by a factor of 3! Transport Layer

Pipelined protocols: overview Go-back-N: sender can send N unacked packets in pipeline receiver only sends cumulative ack doesn’t ack packet if there’s a gap sender has timer for the oldest unacked packet when timer expires, retransmit all unacked packets Selective Repeat: sender can send N unacked packets in pipeline receiver sends individual ack for each packet sender maintains timer for each unacked packet when timer expires, retransmit only that unacked packet Transport Layer

Go-Back-N: sender seq # in pkt header “window” of up to N, consecutive unACKed pkts allowed GBN uses “sliding-window protocol” ACK(n): ACKs all pkts up to, including seq #n - “cumulative ACK” may receive duplicate ACKs (see receiver) timer for the oldest in-flight pkt timeout(n): retransmit packet n and all higher seq # pkts in window retransmit ALL packets that have been previously sent but that have not yet acknowledged. Transport Layer

GBN: receiver extended FSM ACK-only: always send ACK for correctly-received pkt with highest in-order seq # may generate duplicate ACKs need only remember expectedseqnum out-of-order pkt: discard (don’t buffer): no receiver buffering! re-ACK pkt with highest in-order seq # Transport Layer

GBN in action #1 sender receiver send pkt0 send pkt1 send pkt2 expectedseqnum:2 sender sender window (N=4) receiver 0 1 2 3 4 5 6 7 8 send pkt0 send pkt1 send pkt2 send pkt3 (wait) 0 1 2 3 4 5 6 7 8 receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, discard, (re)send ack1 0 1 2 3 4 5 6 7 8 X loss 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 rcv ack0, send pkt4 rcv ack1, send pkt5 0 1 2 3 4 5 6 7 8 receive pkt4, discard, (re)send ack1 ignore duplicate ACK receive pkt5, discard, (re)send ack1 pkt 2 timeout 0 1 2 3 4 5 6 7 8 send pkt2 send pkt3 send pkt4 send pkt5 0 1 2 3 4 5 6 7 8 rcv pkt2, deliver, send ack2 rcv pkt3, deliver, send ack3 rcv pkt4, deliver, send ack4 rcv pkt5, deliver, send ack5 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 Transport Layer

GBN in action #2 1 2 3 Transport Layer

GBN in action #3 1 1 2 2 3 3 Transport Layer

Selective repeat receiver individually acknowledges all correctly received pkts Receiver buffers pkts, as needed, for eventual (발생될 수 있는) in-order delivery to upper layer sender only resends pkts for which ACK not received sender timer for each unACKed pkt sender window N consecutive seq #’s limits seq #s of sent, unACKed pkts Transport Layer

Selective repeat: sender, receiver windows Transport Layer

Selective repeat receiver sender data from above: if next available seq # in window, send pkt timeout(n): resend pkt n, restart timer ACK(n) in [sendbase,sendbase+N]: mark pkt n as received if n is smallest unACKed pkt, advance window base to next unACKed seq # pkt n in [rcvbase, rcvbase+N-1] send ACK(n) out-of-order: buffer in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt pkt n in [rcvbase-N,rcvbase-1] ACK(n) otherwise: ignore Transport Layer

Selective repeat in action #1 sender sender window (N=4) receiver 0 1 2 3 4 5 6 7 8 send pkt0 send pkt1 send pkt2 send pkt3 (wait) 0 1 2 3 4 5 6 7 8 receive pkt0, send ack0 receive pkt1, send ack1 receive pkt3, buffer, send ack3 0 1 2 3 4 5 6 7 8 X loss 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 rcv ack0, send pkt4 rcv ack1, send pkt5 0 1 2 3 4 5 6 7 8 receive pkt4, buffer, send ack4 record ack3 arrived receive pkt5, buffer, send ack5 pkt 2 timeout 0 1 2 3 4 5 6 7 8 send pkt2 0 1 2 3 4 5 6 7 8 record ack4 arrived rcv pkt2; deliver pkt2, pkt3, pkt4, pkt5; send ack2 0 1 2 3 4 5 6 7 8 record ack5 arrived 0 1 2 3 4 5 6 7 8 Q: what happens when ack2 arrives? Transport Layer

Selective repeat in action #2 Transport Layer

[NOTE] GBN 수신자에서 보내는 ACK의 Seq #는 항상 Cumulative Ack.의 특성에 의해 수신자에서 순서대로(in-oder) 성공적으로 받은 최근 번호를 가리킨다. 송신자에서 성공적으로 받은 Seq #이 base와 nextseqnum 사이의 값을 가진다면 송신 윈도우는 하나 이상의 슬롯을 이동하여 base 값은 Ser# + 1 이 된다. 수신 윈도우는 크기는 1이다. With GBN, it is possible for the sender to receive an ACK for a packet that falls outside of its current window (O) SR 수신자에서 보내는 ACK의 Seq #는 수신자가 성공적으로 받은 패킷에 대한 정보로서 활용된다. 송신 윈도우와 수신 윈도우는 동일한 크기를 지닌다. With SR, it is possible for the sender to receive an ACK for a packet that falls outside of its current window (X) Transport Layer