IEC 62478 A Prospective Standard for Acoustic and Electromagnetic Partial Discharge Measurements Michael Muhr Univ.-Prof. Dipl.-Ing. Dr.techn. Dr.h.c. Institute of High Voltage Engineering and System Management University of Technology Graz
Partial Discharge (PD) Measurement Sensitive nondestructive method as important diagnostic tool for evaluation of the insulation condition PD-defect Location and Detection Electrical Non electrical methods M. Muhr
Partial Discharge Measurement Optical Mechanical Chemical Acoustic Opto-acoustic HV Electrical IEC 60270 HF/VHF/UHF Optical Effects (Light) Pressure Wave (Sound) Discharge Effects Dielectric Losses High Frequency Waves Chemical Effects Heat Macroscopic-Physical Effects Detection Methods Partial discharges are local enhancements of the electric field in the area of inhomogenities, either in gaseous, liquid or solid media. These discharges can be detected with optical, electrical, mechanical or chemical methods. At the electrical methods the conventional partial discharge measuring technique with measuring circles due to the guidelines of the IEC 60270 and high frequency, very high frequency and ultra high frequency measuring system are mentioned. Mechanical methods are the acoustical methods with microphones and the Opto - acoustic pressure measurement. M. Muhr
PD-Detection Methods IEC 60270 Conventional electrical measurement Integration at frequency domain Narrow-band Wide-band Integration at time domain G ZFilter HV-Source Test object Coupling capacitor PD-System HV measure PD Pulse Quadripole Measuring impedance M. Muhr
PD-Detection Methods Electrical measurements with high frequencies HF / VHF method – 3 MHz to 300 MHz UHF method – 300 MHz to 3 GHz Acoustic measurements – 10 kHz to 300 kHz Optical measurements – ultraviolet – visible – infrared range Chemical measurements - Optical - Chemical Directional microphone PD HV Acoustic M. Muhr
Optical – PD-Measurement Fiber-optic cable Infrared camera Eye Optical sensor Coronascope Light produced during the discharge Low-light enhancer Optical detection and localisation Outside not accessible: - Fibre-optic cable - Collimator - Photodiodes Outside accessible: Low-light amplifier - Coronascope Different kinds of methods for the optical detection are are possible. We can use the eyes low-light enhancer infrared camera Coronascope …. For discharge of freely accessible surfaces of electrical equipment low-light amplifiers and coronascope are used. On the other side inside and at inaccessible places of the equipment the use of fiber-optic cables is necessary. M. Muhr
PD – Optical Detection M. Muhr Measuring circuit after IEC 60270 and optical measuring system Optical fibre with lens Optical fibre Lens Peak Medium oil Observation area Fluorescent optical fibre conventional opt. fibre fluorescent Plate Rd PC LWL M ST CC VP PR W IEC 270 optical system Oscilloscope, ADU Signal- conversion Voltage supply The next illustration shows the schematic experimental setup in the laboratory. In order to get reproducible discharge conditions a peak plate arrangement is used. PR ... Test setup M ... Test container ( air, oil) LWL ... Optical Fibre CK ... couple capacity ST ... Divider Systems Wideband: 40kHz - 800kHz Cc ... 1nF Optical detection system Optical fibre - Spectrum 200 - 1100nm Optical detector - PIN diode Amplifier basic circuit A particularly developed converter and amplifer circuit On the right side we sees the schematic arrangement of the lens and the fluorescent fibre-optic cable. The fluorescent fibre-optic cables is placed as a straight line and as circle around the peak. The optical system supplies a voltage as output signal. M. Muhr
Optical – PD-Detection in GIS SF6 Photomultiplier Conv. PD Detector ADU I/U Oscilloscope Emission spectrum of corona discharges in SF6 Test arrangement for optical PD-measurement M. Muhr
Chemical – PD-Measurement SF6 Higher temperatures Arc Partial discharge decomposition fluoric compounds (Fluoride) Sulfur-compounds (Sulfate, Sulfide) Sulfur- fluoric-compounds Bei der chemischen Teilentladungsmessung handelt es sich um ein integrales Verfahren der Bestimmung von durch Teilentladungen entstandenen Zersetzungsprodukten im Isoliergas. SF6 ist ein stabiles Gas, unter Einwirkung von Lichtbögen erfolgt eine Zersetzung des Gases (ab ca. 600 °C) Diese Zersetzungsprodukte rekombinieren wieder rasch zu SF6 Bei Anwessenheit von Wasserstoff- oder Sauerstoffmolekühlen Bildung weiterer Reaktionsprodukte Für die Messung relevant SO2F2 und SOF2 (stabile Verbindungen) SOF2 bei hochenergetischen Entladungen SO2F2 eher bei niederenergetischen Entladung Heutzutage können mittels Ionenbeweglichkeitsspektrometer Detektion der Spurengase. Dabei reagieren Indikatorsubstanzen mit Verfärbungen auf bestimmte Zersetzungsprodukte. Hohe Empfindlichkeit Kurzer Zeitaufwand Keine genaue Ortung möglich Keine TE Analyse in GIS Abschnitten mit Schaltern oder Trennern Sensors and analyser H2 Sensor DGA (Gas in oil analysis) Ozone analysis Gas Analysis M. Muhr
Chemical – PD-Measurement IEC DGA Gas ratio values PD partial discharges T1 temperatures T < 300° C D1 discharges with low energy T2 temperatures 300° C < T < 700° C D2 discharges with high energy T3 temperatures T > 700° C M. Muhr
HF / VHF – PD-Measurement HF / VHF – Partial Discharge Detection Frequency range 3 MHz to 300 MHz HF 3 – 30 MHz VHF 30 – 300 MHz Measuring systems Narrow-band, band width < 2 MHz Wide-band, band width > 50 MHz Sensors Capacitive, inductive, electromagnetic M. Muhr
HF / VHF – PD-Measurement Rogowski coil Rogowski coil PD Analyser Weil nun physikalisch verschiedene Defekte unterschiedliche Frequenzbereiche in Anspruch nehmen, lässt sich dies effektiv zur Störunterdrückung verwenden. Mit der sogenannten Schmalbandmethode (5MHz) werden nur die Signalanteile in einem engen Frequenzband ausgewertet – dadurch kann man ein sehr hohes Signal-Rauschverhältnis erzielen. Breitbandige Messung kostengünstiger jedoch geringerer Signal-Rauschabstand Measuring for HF – PD-detection on machines, VHF – PD-coupler, Split ring Rogowski coil M. Muhr
HF / VHF – PD-Measurement Principle of the coupler sensor 2 1 3 direct. coupling A B C D impulse source / - No. signal at coupling output A B C D joint /1 – X left cable / 2 right cable / 3 M. Muhr
HF / VHF – PD-Signal Damping Damping effects: Geometric proportions Discontinuities Impulse form Refraction Reflection Frequency Material B A C-Sensor LDP-5 M. Muhr
UHF – PD-Measurement UHF – Partial Discharge Detection Transient electromagnetic waves Frequency range 300 MHz to 3 GHz Narrow band (~ 5 MHz) Wide band (~ 2 GHz) Propagation : - TM Wave (Transversal magnetic wave) - TE Wave (Transversal electric wave) - TEM Wave Not coupled to the conductor M. Muhr
UHF – PD-Measurement M. Muhr Wide band Narrow band low-pass filter Peak detector PD measuring instrument PRPD pattern Wide band Narrow band Spectrum analyser amplifiers Weil nun physikalisch verschiedene Defekte unterschiedliche Frequenzbereiche in Anspruch nehmen, lässt sich dies effektiv zur Störunterdrückung verwenden. Mit der sogenannten Schmalbandmethode (5MHz) werden nur die Signalanteile in einem engen Frequenzband ausgewertet – dadurch kann man ein sehr hohes Signal-Rauschverhältnis erzielen. Breitbandige Messung kostengünstiger jedoch geringerer Signal-Rauschabstand UHF – PD-measurement M. Muhr
Field grading electrodes UHF – PD-Sensors - Mobile UHF-window sensor Conventional UHF-sensors Disc sensor Cone sensor Conductor Cage Dectector Field grading electrodes Detector Sensoren können entweder fest eingebaut sein oder bei Bedarf dauerhaft oder temporär nachgerüstet werden. Je nach Typ der GIS ist die mehr oder weniger aufwendig. Die scheibenförmigen Elektroden haben einen Durchmesser von 100 – 200 mm. Sie sind isoliert an der Innenseite der Kapselung angebracht mit einer koaxialen Durchführung zum äußeren Messanschluss. Bei realen Konstruktionen wird die Feldgeometrie nur geringfügig verändert, so dass keine negativen Auswirkungen auf die Betriebssicherheit der Anlage zu beführten sind. Bei Altanlagen wurde die Nachrüstung einen erheblichen Aufwand bedeuten, daher kommen mobile Scheibensensoren zum Einsatz. Diese können ohne Betriebsunterbrechung direkt auf Plexiglasfenster aufgesetzt werden. M. Muhr
Sensitivity Verification UHF measurement C1 C2 Signal 1 Defect PG Signal 2 Impulses of variable amplitude Nachweis der Möglichkeit der Detektion von Teilentladungen innerhalb der Anlage oberhalb eines bestimmten Pegels. Vergleichsmessung konventionelle und UHF Methode. Handelsübliche Kalibratoren ungeeignet, da das Frequenzspektrum nur bis zu eineigen 10 MHz reicht. Von Cigre wurde ein Empfindlichkeitsnachweis vorgeschlagen, hierbei ist die Detektionsmöglichkeit von einem tanzenden Partikel mit einer scheinbaren Ladung von 5 pC an der kompletten Anlage nachzuweisen. M. Muhr
UHF – PD-Fault Location Schematic arrangement Sensor 1 Pre amplifier Measuring instrument L2 Sensor 2 1 ... Sensor 1 2 ... Sensor 2 Time delay Zeit Amplitude 1 2 Defect Der Ort der Teilentladungsquelle kann durch die Bestimmung der Zeitdifferenz der an zwei unterschiedliche platzierten Sensoren Signalflanken bestimmt werden. Dabei müssen jedoch die Verbindungsleitungen zwischen Sonden und Messgerät und die daraus möglichen Laufzeitunterschiede berücksichtigt werden. Weiters muss man die unterschiedlichen Ausbreitungs-geschwindigkeiten der Wellen berücksichtigen, wenn diese durch Isolatoren treten. Da das Gas eine von Luft unterschiedliche Dielektrizitätszahl aufweist, muss die Lichtgeschwindigkeit umgerechnet werden. Cgas = Cluft / r Die Zeitmessung ist mit Abweichungen von etwa 1 ns behaftet, was zu einer Unsicherheit in der Ortsbestimmung von ca. 10 cm führt M. Muhr
UHF – PD-Signal Damping, Sensitivity Damping effects: Frequency Geometries Conductor material Mode type Reflection and refraction Sensivity: Facility configuration Failure location Location of the sensor Measurement equipment Sensitivity of developed UHF-sensors M. Muhr
Acoustic – PD-Measurement Acoustic Partial Discharge Detection Acoustic signal as a result of the pressure wave produced by PD Frequency spectrum 10 Hz up to 300 kHz SF6 Box AE Sensor Air Principle schematic to the acoustic PD-detection M. Muhr
Acoustic – PD-Sensors HV Time delay Sensor PD Time Signal Directional microphone - Piezo-electric (sound emission) - Condenser microphones Structure-born sound-resonance - Accelerometer Opto-acoustic-sensor Therefore special techniques are in use. One is to use the time delay of two areal separated sensors. Therefore electrical sensors like antennas or acoustical sensors like microphones can be used. The premise is a knowledge of the internal structure of the system. An other possibility is use of directional sensors like microphones or antennas. The difficult here is to detect the source and not a reflection. By using different sensor positions can the risk of a false measurement reduced. M. Muhr
Acoustic – PD-Measurement PD-Detector AE Sensor Oscilloscope amplifier Filter Akustisches Messystem zur Aufnahme von Körperschall. Die Aufnahme des Schalles erfolgt durch einen Piezoaufnehmer welcher an die metallische Außenfläche der Anlage aufgedrückt wird. Das Signal kann direkt oder indirekt über einen Zwischenverstärker in das Messgerät eingespeist werden. Ein Eingriff in die Anlage ist für die akustische Messung nicht erforderlich, da die Signalerfassung mit Hilfe von außen auf der Kapselung angebrachten Sensoren erfolgt. Aufgrund der hohen Dämpfung von Flanschverbindungen und Gießharzdurchführungen muss jeder Gasraum einzeln auf TE untersucht werden. Abhängig vom Dämpfungsverhalten der umliegenden Materialien kann das Signal von aussen zugänglichen Stellen gemessen werden. SF6 ist ein schlechtes UHF Übertragungsmedium A/D Converter Acoustic – PD-detection system M. Muhr
Acoustic – PD-Measurement Damping effects: Equipment dispersion Construction Insulation structures Gas pressure Encapsulation material Absorption during a medium to another Geometrical spreading of the wave Acoustic fingerprint of a overhead line conductor M. Muhr
Opto-Acoustic – PD-Measurement Laser Reference optical fibre coil Sensing optical fibre coil Oil tank High Voltage PD-source Detector Beam Splitter Experimental setup of the optical interferometric detection of PD M. Muhr
IEC TC42 WG 14 Content 1 Scope Phenomena PD occurrence in discharging defects Frequency / time behaviour Specifies of HV-components Applicability for detection Normative References Definitions Sensors Types, parameters, positioning Location (time and frequency domain) vs measurement only M. Muhr
IEC TC42 WG 14 Content 2 Transmission Aspects A) UHF Aspects PD source, quantity E [V/m] spectrum, filed mode, signal strength, magnitude, characteristic impedance, velocity of medium, distance, activity Sensor-antenna, basic quantity [m] type, bandwidth, position, receiving area, transfer impedance, characteristics Reading quantity [V] Derived quantity measuring equipment, bandwidth, center frequency, tuning M. Muhr
IEC TC42 WG 14 Content 3 B) HF / VHF Aspects PD source, quantity [V] or [A] electric or magnetic signal, impedance, signal magnitude, distance, activity Sensor – impedance [R, L, C] type, bandwidth, position, dielectric attenuation, distortion, polarity aspects Reading quantity [V, A] Derived quantity measuring equipment, center frequency, tuning, bandwidth, pulse resolution M. Muhr
IEC TC42 WG 14 Content 4 C) Acoustic Aspects Mechanical pressure, quantity [Pascal] pressure waves, modes, acoustic impedance, delay, propagation velocity, distance Sensor – impedance piezo electric, composite material, optical, microphone, directivity, position, coupling, bandwidth, linearity Reading quantity [V] Derived quantity measuring equipment, pulse counter, pulse pattern M. Muhr
IEC TC42 WG 14 Content 5 System Checks Performance and sensitivity check UHF Aspects performance check: functional check of the whole measuring path including sensor and PD acquisition system sensitivity check: emission of electromagnetic waves into test objects, distance HF / VHF Aspects performance check: sensor to sensor coupling in a specific arrangement sensitivity check: injection of field signal to test object, distance Acoustic Aspects performance and sensitivity check: recommendation of acoustic standards M. Muhr
IEC TC42 WG 14 Content 6 pC Correlation HF / VHF / UHF – pulse generator injection to determine relation between pC and measured quantities Acoustic: can not compared to pC without knowing the type of PD source New quantities parameters linear with sensor output [mV] parameters quadratic with sensor output [mW] effective height [mm] – ratio between sensor output and incoming electrical field Effective aperture [mm2] – ratio between maximum sensor output power and power density of incoming electrical field sensor gain [dBi] – ratio between receiving power antenna and receiving power of isotropic radiator M. Muhr
Definition of Transfer IEC TC42 WG 14 Content 7 EM – PD Source Basic Quantity E [Volt / meter] Sensor – Antenna Basic Quantity e.g. [meter] Reading Quantity [Volt] PD [pC] Quantity [m Watt] Low Standard Deviation Definition of Transfer Characteristic Definition of Transfer Characteristic System Check Physical Generic Aspect Mathematical Term Quantity [Volt] High Standard Deviation M. Muhr
IEC TC42 WG 14 Content 8 Non Standardization Applicable sensor Test and measuring configurations Interpretation – task of the component panels M. Muhr
Thank You for Your Attention M. Muhr