µi = (xX xi) / |X| =(1/57)x k 2kxi, (1/57)k 2kxxi,k 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 1 3 7 1 2 4 1 3 5 1 23 2 3 1 11111111111111 2 1 3 5 2 1 3 5 2 1 3 d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 µi = (xX xi) / |X| =(1/57)x k 2kxi, (1/57)k 2kxxi,k =(1/57)k 2krcPi,k for i=1 =(1/57)*(7*23 +24*22+35*21+23*20) =4.3 µ for i=2 =(1/57)*(22*23 +35*22+35*21+33*20) =7.35
story but they may have higher cost? ra,0=skin(a,1) rx1,1,k 3 1 4 3 1 2 3 2 1 d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 1 3 7 1 2 4 1 3 5 1 23 2 3 1 11111111111111 2 1 3 5 2 1 3 5 2 1 3 1 6 1 1 2 4 2 1 7 2 1 8 2 1 µ We note that the ring(a,d*(k-1),d*k) tell an even greater story but they may have higher cost? ra,0=skin(a,1) ra,k=ring(a,2k-1,2k) ring(a,d*2k-1,d*2k ) k=0... tell a great story on neighbors. (here, d=1) rf,a,k=ring(f,f-1a,2k-1,2k)
µ x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 4 1 7 4 1 4 2 1 5 S 1 2 S 1 8 S 2 1 4 U 1 3 U 1 U 2 1 µ
µ x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V T 1 6 T 1 6 T 2 1 V 1 7 V 1 4 V 2 1 6 v 1 v 1 v 2 1 µ
x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V q 1 q 1 q 2 1 7 w 1 2 w 1 w 2 1 s 1 3 s 1 s 2 1
x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 1 5 1 4 1 2 8 5 1 8 5 1 4 5 2 1 8 9 1 9 1 8 9 2 1
x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V d 1 8 d 1 9 d 2 1 4 h 1 8 h 1 9 h 2 1 4 j 1 00 9 j 1 9 j 2 1 9
x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V l 1 9 l 1 4 l 2 1 8 n 1 5 n 1 4 n 2 1 3
x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V I 1 2 I 1 3 I 2 1 7 G 1 8 G 1 5 G 2 1 7 E 1 7 E 1 2 E 2
µ x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V C 1 C 1 2 C 2 1 5 x 1 5 x 1 3 x 2 1 7 µ
TV-countours bounded by isobars gaps of at d e f g 9 a b c 5 6 7 8 1 2 3 4 n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 1 m 1 4 T 1 3 M 1 9 H 1 8 F 1 7 C 1 8 x 1 9 1 2 q 1 s 1 4 u 1 x TVX gap 2415 13 p 2428 97 P 2525 21 Q 2546 38 O 2584 34 m 2618 110 o 2728 8 S 2736 156 T 2892 38 R 2930 106 k 3036 46 U 3082 64 l 3146 8 i 3154 26 K 3180 21 L 3201 72 J 3273 63 M 3336 130 V 3466 14 I 3480 4 n 3484 109 g 3593 89 h 3682 110 j 3792 8 f 3800 9 H 3809 144 G 3953 168 e 4121 25 c 4146 94 N 4240 24 v 4264 89 b 4353 43 F 4396 144 E 4540 16 d 4556 118 a 4674 139 8 4813 207 7 5020 77 D 5097 12 9 5109 132 C 5241 100 6 5341 253 4 5594 162 z 5756 20 5 5776 1 A 5777 24 3 5801 48 y 5849 63 B 5912 144 x 6056 66 2 6122 435 1 6557 925 q 74822799 r10281 815 t11096 125 w11221 221 s11442 815 u12257 57*1 57*2 57*3 57*4 µ 57*5 57*6 57*7 TV-countours bounded by isobars gaps of at least 57*radial_distance_from_=(7.4, 4.3) 57*7 57*8 57*9 57*11 57*14 57*15
TVX