Chapter 4 Network Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Network Layer.

Slides:



Advertisements
Similar presentations
Discussion Monday ( ). ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier header checksum time to live.
Advertisements

4: Network Layer4a-1 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host, router.
Chapter 4 Network Layer A note on the use of these ppt slides:
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 14.
10 - Network Layer. Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving.
11- IP Network Layer4-1. Network Layer4-2 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 15.
4: Network Layer4b-1 Router Architecture Overview Two key router functions: r run routing algorithms/protocol (RIP, OSPF, BGP) r switching datagrams from.
Chapter 4 Queuing, Datagrams, and Addressing
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
1 CSE3213 Computer Network I Network Layer (7.1, 7.3, ) Course page: Slides modified from Alberto Leon-Garcia.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
1 John Magee 24 February 2014 CS 280: Network Layer: Virtual Circuits / Datagram Networks and What’s inside a Router? Most slides adapted from Kurose and.
Router Architecture Overview
1 Network Layer Lecture 15 Imran Ahmed University of Management & Technology.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
IP addresses. Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol datagram.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection”
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Forwarding.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with.
The Internet Network layer
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 19 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
IP Fragmentation. Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side,
1 COMP 431 Internet Services & Protocols The IP Internet Protocol Jasleen Kaur April 21, 2016.
IP Internet Protocol. IP TCP UDP ICMPIGMP ARP PPP Ethernet.
CSE 421 Computer Networks. Network Layer 4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside.
Graciela Perera Department of Computer Science and Information Systems Slide 1 of 18 INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723 Graciela.
Network Layer4-1 Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol – Datagram.
Introduction to Networks
Chapter 4: Network Layer
Data Communication and Networks
Chapter 3 Part 3 Switching and Bridging
Computer Communication Networks
Chapter 4 Network Layer All material copyright
Chapter 4: Network Layer
Chapter 4: Network Layer
CS/ECE 438: Communication Networks
Chapter 4: Network Layer
Chapter 3 Part 3 Switching and Bridging
CS 1652 The slides are adapted from the publisher’s material
Chapter 4-1 Network layer
CS 457 – Lecture 10 Internetworking and IP
What’s “Inside” a Router?
Wide Area Networks and Internet CT1403
October 26th, 2010 CS1652/Telcom2310 Jack Lange
Overview The Internet (IP) Protocol Datagram format IP fragmentation
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Chapter 3 Part 3 Switching and Bridging
Network Layer: Control/data plane, addressing, routers
Chapter 4: Network Layer
Chapter 4: Network Layer
32 bit destination IP address
Presentation transcript:

Chapter 4 Network Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Network Layer

Chapter 4: Network Layer Chapter goals: understand principles behind network layer services: network layer service models forwarding versus routing how a router works routing (path selection) dealing with scale advanced topics: IPv6, mobility instantiation, implementation in the Internet Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

Router Architecture Overview Two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) forwarding datagrams from incoming to outgoing link Network Layer

Input Port Functions Decentralized switching: Physical layer: bit-level reception Decentralized switching: given datagram dest., lookup output port using forwarding table in input port memory goal: complete input port processing at ‘line speed’ queuing: if datagrams arrive faster than forwarding rate into switch fabric Data link layer: e.g., Ethernet see chapter 5 Network Layer

Three types of switching fabrics crossbar Network Layer

Switching Via Memory First generation routers: traditional computers with switching under direct control of CPU packet copied to system’s memory speed limited by memory bandwidth (2 bus crossings per datagram) Input Port Output Memory System Bus Network Layer

Switching Via a Bus datagram from input port memory to output port memory via a shared bus bus contention: switching speed limited by bus bandwidth 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers Network Layer

Switching Via An Interconnection Network overcome bus bandwidth limitations Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric. Cisco 12000: switches 60 Gbps through the interconnection network Network Layer

Output Ports Buffering required when datagrams arrive from fabric faster than the transmission rate Scheduling discipline chooses among queued datagrams for transmission Network Layer

Output port queueing buffering when arrival rate via switch exceeds output line speed queueing (delay) and loss due to output port buffer overflow! Network Layer

How much buffering? RFC 3439 rule of thumb: average buffering equal to “typical” RTT (say 250 msec) times link capacity C e.g., C = 10 Gps link: 2.5 Gbit buffer Recent recommendation: with N flows, buffering equal to RTT C . N Network Layer

Input Port Queuing Fabric slower than input ports combined -> queueing may occur at input queues Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward queueing delay and loss due to input buffer overflow! Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

The Internet Network layer Host, router network layer functions: Transport layer: TCP, UDP IP protocol addressing conventions datagram format packet handling conventions Routing protocols path selection RIP, OSPF, BGP Network layer forwarding table ICMP protocol error reporting router “signaling” Link layer physical layer Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

32 bit destination IP address IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier header checksum time to live 32 bit source IP address IP protocol version number header length (bytes) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, specify list of routers to visit. how much overhead with TCP? 20 bytes of TCP 20 bytes of IP = 40 bytes + app layer overhead Network Layer

IP Fragmentation & Reassembly network links have MTU (max.transfer size) - largest possible link-level frame. different link types, different MTUs large IP datagram divided (“fragmented”) within net one datagram becomes several datagrams “reassembled” only at final destination IP header bits used to identify, order related fragments fragmentation: in: one large datagram out: 3 smaller datagrams reassembly Network Layer

IP Fragmentation and Reassembly ID =x offset =0 fragflag length =4000 =1 =1500 =185 =370 =1040 One large datagram becomes several smaller datagrams Example 4000 byte datagram MTU = 1500 bytes 1480 bytes in data field offset = 1480/8 Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

IP Addressing: introduction IP address: 32-bit identifier for host, router interface interface: connection between host/router and physical link router’s typically have multiple interfaces host typically has one interface IP addresses associated with each interface 223.1.1.1 223.1.2.1 223.1.1.2 223.1.1.4 223.1.2.9 223.1.2.2 223.1.1.3 223.1.3.27 223.1.3.1 223.1.3.2 223.1.1.1 = 11011111 00000001 00000001 00000001 223 1 1 1 Network Layer

Subnets IP address: What’s a subnet ? subnet part (high order bits) host part (low order bits) What’s a subnet ? device interfaces with same subnet part of IP address can physically reach each other without intervening router 223.1.1.1 223.1.2.1 223.1.1.2 223.1.1.4 223.1.2.9 223.1.2.2 223.1.1.3 223.1.3.27 subnet 223.1.3.1 223.1.3.2 network consisting of 3 subnets Network Layer

Subnets 223.1.1.0/24 223.1.2.0/24 223.1.3.0/24 Recipe To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet. Subnet mask: /24 Network Layer

Subnets 223.1.1.2 How many? 223.1.1.1 223.1.1.4 223.1.1.3 223.1.9.2 223.1.7.0 223.1.9.1 223.1.7.1 223.1.8.1 223.1.8.0 223.1.2.6 223.1.3.27 223.1.2.1 223.1.2.2 223.1.3.1 223.1.3.2 Network Layer

IP addressing: CIDR CIDR: Classless InterDomain Routing subnet portion of address of arbitrary length address format: a.b.c.d/x, where x is # bits in subnet portion of address 11001000 00010111 00010000 00000000 subnet part host 200.23.16.0/23 Network Layer