6.5 EQ: How do you Identify a trapezoid and apply its properties?

Slides:



Advertisements
Similar presentations
Trapezoids and Kites 1/16/13 Mrs. B.
Advertisements

6.5 Trapezoids and Kites.
6.5 Trapezoids and Kites Geometry Mrs. Spitz Spring 2005.
8.6 Trapezoids.
Honors Geometry Section 4.5 (3) Trapezoids and Kites.
Trapezoids & Kites. Trapezoid Is a quadrilateral with exactly 1 pair of parallel sides.
Sect. 6.5 Trapezoids and Kites Goal 1 Using Properties of Trapezoids Goal 2 Using Properties of Kites.
CP Geometry Mr. Gallo. What is a Trapezoid Trapezoid Isosceles Trapezoid leg Base Base Angles leg Base Angles If a quadrilateral is a trapezoid, _________________.
Use Properties of Trapezoids and Kites Goal: Use properties of trapezoids and kites.
6.6 Trapezoids and Kites A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides of a trapezoid are called bases. The.
Use Properties of Trapezoids and Kites
6-6 Trapezoids and Kites.
Trapezoids and Kites Section 8.5.
Properties of Other Quadrilaterals Students will be able to… Identify and use the properties of rectangles, squares, rhombuses, kites, and trapezoids.
Trapezoids A quadrilateral with exactly one pair of parallel sides is called a trapezoid.
8.5 Trapezoids.
Properties of Trapezoids and Kites The bases of a trapezoid are its 2 parallel sides A base angle of a trapezoid is 1 pair of consecutive angles whose.
5.11 Use Properties of Trapezoids and Kites. Vocabulary  Trapezoid – a quadrilateral with exactly one pair of parallel sides. Base Base Angle Leg.
8.5 TRAPEZOIDS AND KITES QUADRILATERALS. OBJECTIVES: Use properties of trapezoids. Use properties of kites.
Geometry Section 8.5 Use Properties of Trapezoids and Kites.
Trapezoids & Kites Sec 6.5 GOALS: To use properties of trapezoids and kites.
Final Exam Review Chapter 8 - Quadrilaterals Geometry Ms. Rinaldi.
Geometry Section 6.5 Trapezoids and Kites. A trapezoid is a quadrilateral with exactly one pair of opposite sides parallel. The sides that are parallel.
6.5: TRAPEZOIDS AND KITES OBJECTIVE: TO VERIFY AND USE PROPERTIES OF TRAPEZOIDS AND KITES.
7.5 Trapezoids and Kites. Trapezoids Definition- A quadrilateral with exactly one pair of parallel sides. Bases – Parallel sides Legs – Non-parallel sides.
Bell Ringer.
Geometry 6-6 Trapezoids Only one pair of parallel sides (called bases) Non-parallel sides are called legs Base angles share a common base.
Lesson 2.17: Trapezoid & Kites 1 Lesson 6-5 Trapezoids and Kites.
Special Quadrilaterals Properties of Kites & Trapezoids.
Warm-Up Sect. 6.5 Trapezoids and Kites Goal 1 Using Properties of Trapezoids Goal 2 Using Properties of Kites.
6.5 Trapezoids Textbook page 332. A trapezoid is a quadrilateral with exactly one pair of parallel sides.
8.5 – Use Properties of Trapezoids and Kites. Trapezoid: Consecutive interior angles are supplementary A B C D m  A + m  D = 180° m  B + m  C = 180°
6.5 Trapezoids. Objectives: Use properties of trapezoids.
Use Properties of Trapezoids and Kites Lesson 8.5.
Trapezoids Section 6.5. Objectives Use properties of trapezoids.
Section 6-5 Trapezoids and Kites. Trapezoid A quadrilateral with exactly one pair of parallel sides.
Bell Ringer. Trapezoid A Trapezoid is a quadrilateral with exactly one pair of parallel sides. The Parallel sides are the bases The non parallel sides.
8.5 Trapezoids. Parts of a Trapezoid Parts The bases of a trapezoid are the parallel sides The legs of the trapezoid connect the bases The base angles.
HONORS GEOMETRY 6.6: Trapezoids. Do Now: Complete the do now given to you when you entered class.
6.5 TRAPEZOIDS OBJECTIVE: USE PROPERTIES OF TRAPEZOIDS.
8.5 Use Properties of Trapezoids and Kites Hubarth Geometry.
Objectives Use properties of kites to solve problems.
6.5 EQ: How do you Identify a trapezoid and apply its properties
Do Now: List all you know about the following parallelograms.
6.6 Trapezoids and Midsegment Theorem
6.5 Trapezoids and Kites Geometry Ms. Reser.
Section 6.5: Trapezoids and Kites.
Properties of Trapezoids and Kites
What are Kites?
6.6 Trapezoids & Kites.
6.5 Trapezoids.
Trapezoids Section 5-5.
Trapezoids and Kites Section 7.5.
6-6 Trapezoids & Kites The student will be able to:
Chapter 8.5 Notes: Use Properties of Trapezoids and Kites
Properties of Trapezoids and Kites
Trapezoids.
6.6 Properties of Kites and Trapezoids
6.5 Trapezoids and Kites.
A quadrilateral with only one pair of parallel sides.
DRILL If the two diagonals of a rectangle are 4x + 10 and 2x + 36, then what is the value of x? If two adjacent sides of a rhombus are 3x – 4 and 6x –
Understand, use and prove properties of and relationships among special quadrilaterals: parallelogram, rectangle, rhombus, square, trapezoid, and kite.
Section 6.5 Trapezoids and Kites
Trapezoids and Kites.
Geometry Unit 12, Day 5 Mr. Zampetti
Trapezoids and Kites.
Base angles Isosceles trapezoids Midsegments
What are the main properties of Trapezoids and Kites?
Chapter 6 Quadrilaterals.
4.4 The Trapezoid A quadrilateral with exactly two parallel sides. The parallel sides are called the bases and the nonparallel sides are the legs. Median.
Presentation transcript:

6.5 EQ: How do you Identify a trapezoid and apply its properties? Use properties of trapezoids. EQ: How do you Identify a trapezoid and apply its properties?

trapezoid A quadrilateral with exactly one pair of parallel sides. The parallel sides are called the bases. The nonparallel sides are called the legs.

trapezoid A quadrilateral with exactly one pair of parallel sides. The parallel sides are called the bases. The nonparallel sides are called the legs. A trapezoid has two pairs of base angles.

trapezoid A quadrilateral with exactly one pair of parallel sides. The parallel sides are called the bases. The nonparallel sides are called the legs. A trapezoid has two pairs of base angles.

isosceles trapezoid. If the legs of a trapezoid are congruent.

Theorem 6.12 If a trapezoid is isosceles, then each pair of base angles is congruent.

Theorem 6.13 If a trapezoid has a pair of congruent base angles, then it is isosceles.

PQRS is an isosceles trapezoid. Find the missing angle measures. Example 1 Find Angle Measures of Trapezoids PQRS is an isosceles trapezoid. Find the missing angle measures. SOLUTION PQRS is an isosceles trapezoid So, mR = mS = 50°. 1. Because S and P are same-side interior angles & are supplementary. So, mP = 180° – 50° = 130°. 2. Because Q and P are a pair of base angles of an isosceles trapezoid, mQ = mP = 130°. 3. 9

ABCD is an isosceles trapezoid. Find the missing angle measures. Checkpoint Find Angle Measures of Trapezoids ABCD is an isosceles trapezoid. Find the missing angle measures. 1. ANSWER mA = 80°; mB = 80°; mC = 100° 2. ANSWER mA = 110°; mB = 110°; mD = 70° 3. ANSWER mB = 75°; mC = 105°; mD = 105°

The midsegment of a trapezoid is the segment that connects the midpoints of its legs.

Find the length of the midsegment DG of trapezoid CEFH. Example 2 Midsegment of a Trapezoid Find the length of the midsegment DG of trapezoid CEFH. SOLUTION Use the formula for the midsegment of a trapezoid. DG = 1 2 (EF + CH) Formula for midsegment of a trapezoid = 1 2 (8 + 20) Substitute 8 for EF and 20 for CH. = 1 2 (28) Add. = 14 Multiply. ANSWER The length of the midsegment DG is 14. 13

Find the length of the midsegment MN of the trapezoid. Checkpoint Midsegment of a Trapezoid Find the length of the midsegment MN of the trapezoid. 4. ANSWER 11 5. ANSWER 8 6. ANSWER 21