5.1(a) Notes: Using Fundamental Identities

Slides:



Advertisements
Similar presentations
Using Fundamental Identities
Advertisements

Section 5.2 Trigonometric Functions of Real Numbers Objectives: Compute trig functions given the terminal point of a real number. State and apply the reciprocal.
7.1 – Basic Trigonometric Identities and Equations
Ch 7 – Trigonometric Identities and Equations 7.1 – Basic Trig Identities.
Chapter 6: Trigonometry 6.5: Basic Trigonometric Identities
EXAMPLE 1 Find trigonometric values Given that sin  = and <  < π, find the values of the other five trigonometric functions of . 4 5 π 2.
5.1 Using Fundamental Identities. Fundamental Trigonometric Identities.
Right Triangle Trigonometry
Chapter 6 Trig 1060.
5.1 Fundamental Identities
5.1 Using Fundamental Identities
Right Triangle Trigonometry
November 5, 2012 Using Fundamental Identities
Odds and Even functions Evaluating trig functions Use a calculator to evaluate trig functions.
Advanced Precalculus Notes 5.3 Properties of the Trigonometric Functions Find the period, domain and range of each function: a) _____________________________________.
13.1 Trigonometric Identities
Fundamental Trigonometric Identities Reciprocal Identities Tangent and Cotangent Identities Pythagorean Identities.
Trigonometry Section 8.4 Simplify trigonometric expressions Reciprocal Relationships sin Θ = cos Θ = tan Θ = csc Θ = sec Θ = cot Θ = Ratio Relationships.
Pythagorean Identities Unit 5F Day 2. Do Now Simplify the trigonometric expression: cot θ sin θ.
Math III Accelerated Chapter 14 Trigonometric Graphs, Identities, and Equations 1.
Using Fundamental Identities Objectives: 1.Recognize and write the fundamental trigonometric identities 2.Use the fundamental trigonometric identities.
Do Now  .
Lesson Objective: Evaluate trig functions.
Warm Up For a-d: use a calculator to evaluate:
Trigonometric Identities and Equations
TRIGONOMETRIC IDENTITIES
Trigonometry Identities.
Section 5.1 Trigonometric Identities
Analytic Trigonometry 5.1 FUNdamental Identities
Section 5.1A Using Fundamental Identities
Trigonometric Functions: The Unit Circle Section 4.2
Simplifying Trig. Identities
Using Fundamental Identities
Trigonometric Functions: The Unit Circle 4.2
Evaluating Angles.
Ch. 5 – Analytic Trigonometry
14.3 Trigonometric Identities
Splash Screen.
Trigonometric Function: The Unit circle
Section 5.1: Fundamental Identities
Complete each identity.
Lesson 6.5/9.1 Identities & Proofs
Basic Trigonometric Identities and Equations
MATH 1330 Section 5.1.
Analytic Trigonometry 5.1 FUNdamental Identities
7.2 – Trigonometric Integrals
Lesson 5.1 Using Fundamental Identities
Basic Trigonometric Identities and Equations
Pythagorean Identities
One way to use identities is to simplify expressions involving trigonometric functions. Often a good strategy for doing this is to write all trig functions.
Pyrhagorean Identities
Using Fundamental Identities (Section 5-1)
Trigonometric Identities
Using Fundamental Identities
Using Fundamental Identities
Fundamental Trig Identities
Lesson 1: Establishing Trig Identities
TRIG SUMMARY PROJECT Complete each slide using the stylus.
5.2(b) Notes: More Verifying Trig Identities
Basic Trigonometric Identities and Equations
Copyright © Cengage Learning. All rights reserved.
Evaluating Angles.
TRIGONOMETRIC IDENTITIES
WArmup Rewrite 240° in radians..
An Introduction to Trig Identities
Main Ideas of Hon PreCalc Ch. 5 Class 1
Warm-up: (1 − sin 2 x) sec 2 x = cos 2 x sec 2 x = 1
5.2(c) Notes: A Bit of Calculus in Verifying Trig Identities
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
Presentation transcript:

5.1(a) Notes: Using Fundamental Identities Date: 5.1(a) Notes: Using Fundamental Identities   Lesson Objective: Recognize and write the fundamental trig identities. Use the trig iden-tities to simplify trig expressions. CCSS: F-TF Extend the domain of tri­go­no­me­tric functions using the unit circle. You will need: a separate sheet of paper, graphing calculator

Lesson 1: Fundamental Trig Identities On a separate page, write the following iden-tities.

Lesson 1: Fundamental Trig Identities Reciprocal Identities: sin x = ____ cos x = ____ tan x = ____ csc x = ____ sec x = ____ cot x = ____

Lesson 1: Fundamental Trig Identities Reciprocal Identities: sin x = ____ cos x = ____ tan x = ____ csc x = ____ sec x = ____ cot x = ____ Quotient Identities: tan x = ____ cot x = ____

Lesson 1: Fundamental Trig Identities Pythagorean Identities:

Lesson 1: Fundamental Trig Identities Pythagorean Identities: + = 1 

Lesson 1: Fundamental Trig Identities Pythagorean Identities: + = 1 sin x = + cos x = + tan x = + cot x = +

Lesson 1: Fundamental Trig Identities Use a graphing utility to graph the following: sin x cos x sin π 2 −𝑥 = ?

Lesson 1: Fundamental Trig Identities Cofunction Identities: sin π 2 −𝑥 = cos x cos π 2 −𝑥 = tan π 2 −𝑥 = cot π 2 −𝑥 = csc π 2 −𝑥 = sec π 2 −𝑥 =

Lesson 1: Fundamental Trig Identities Even Identities: cos(-x) = sec(-x) = Odd Identities: sin(-x) = csc(-x) = tan(-x) = cot(-x) =

Lesson 2: Using Identities to Evaluate a Function Use the values sin x = ½ and cos x > 0 to find the values of all six trigonometric functions.

Lesson 3: Simplifying a Trig Expression cos²x csc x – csc x

Lesson 3: Simplifying a Trig Expression csc t – cos t cot t

Lesson 4: Factoring Trigonometric Expressions Factor each expression. 1 – cos²x

Lesson 4: Factoring Trigonometric Expressions Factor each expression. 2 csc²x – 7csc x + 6

Lesson 4: Factoring Trigonometric Expressions Factor each expression. sec²x + 3 tan x + 1

5.1(a): Do I Get It? Yes or No Use the values sec u = - 3 2 and tan u > 0 to find the values of all six trig functions. Simplify sin x cos2x – sin x. Simplify sin t + cot t cos t. Factor sec2 θ – 1. Factor 4 tan2 θ + tan θ – 3. Factor csc2 x – cot x – 3.