Quantitative assessment of articular cartilage morphology via EPIC-μCT

Slides:



Advertisements
Similar presentations
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Advertisements

X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair  T.A. Holland, Ph.D., E.W.H. Bodde, M.D., V.M.J.I.
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics 
Granulocyte macrophage – colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture  M.-D. Truong,
Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running  T.J. Mosher, Y. Liu, C.M. Torok 
Mineralization of articular cartilage in the sprague-dawley rat: characterization and mechanical analysis  M.L. Roemhildt, B.D. Beynnon, M. Gardner-Morse 
J. A. Waung, S. A. Maynard, S. Gopal, A. Gogakos, J. G. Logan, G. R
Imaging following acute knee trauma
2D and 3D MOCART scoring systems assessed by 9
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
T. Maerz, M. D. Newton, K. Kristof, O. Motovylyak, J. S. Fischgrund, D
T1ρ and T2 relaxation times predict progression of knee osteoarthritis
M. Siebelt, A. E. van der Windt, H. C. Groen, M. Sandker, J. H
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage  M. Rutgers, M.J.P. van Pelt, W.J.A. Dhert, L.B.
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort  W. Wirth, M.S., M.-P. Hellio.
Establishment of a rabbit model to study the influence of advanced glycation end products accumulation on osteoarthritis and the protective effect of.
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Cartilage MRI T2∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease  C.-Y. Wang, Y.-J. Peng,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo.
Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees  G.J. Kazakia, D. Kuo, J. Schooler, S.
Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model  S. Elmorsy, T. Funakoshi, F. Sasazawa,
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint.
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic.
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy  Y. Song, M.S., J.M. Greve, M.S., D.R. Carter,
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
R. Parekh, M.K. Lorenzo, S.Y. Shin, A. Pozzi, A.L. Clark 
In vivo imaging of cartilage degeneration using μCT-arthrography
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Region of interest analysis: by selecting regions with denuded areas can we detect greater amounts of change?  D.J. Hunter, L. Li, Y.Q. Zhang, S. Totterman,
A new method to analyze dGEMRIC measurements in femoroacetabular impingement: preliminary validation against arthroscopic findings  R. Lattanzi, C. Petchprapa,
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
M. E. Bowers, B. S. , N. Trinh, M. S. , G. A. Tung, M. D. , F. A. C. R
Presentation transcript:

Quantitative assessment of articular cartilage morphology via EPIC-μCT L. Xie, Ph.D., A.S.P. Lin, M.S., M.E. Levenston, Ph.D., R.E. Guldberg, Ph.D.  Osteoarthritis and Cartilage  Volume 17, Issue 3, Pages 313-320 (March 2009) DOI: 10.1016/j.joca.2008.07.015 Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 The segmentation method for quantifying articular cartilage morphology in the rat distal femur. Femoral cross-sections (A) were transformed into sagittal sections (B) via 3-D rotation of the grayscale image file. After drawing the contour lines to eliminate any adjacent bone marrow space (C), an appropriate threshold range was selected to segment cartilage from bone tissue according to the histogram analysis of the tissues (D). The 3-D morphology of articular cartilage was then visualized (E) and quantified in terms of cartilage thickness, volume, and surface area. Osteoarthritis and Cartilage 2009 17, 313-320DOI: (10.1016/j.joca.2008.07.015) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Optimization of incubation time and Hexabrix concentration for EPIC-μCT in the rat model. (A) The volume of analysis for each femoral condyle extended from the top surface of the cartilage down 31 slices, or 372μm, which included cartilage, subchondral bone, and some trabecular bone. (B) The average attenuation of femoral articular cartilage after incubation with each concentration of Hexabrix solution indicated that 30min of incubation was sufficient for Hexabrix to reach equilibration, regardless of the concentration. Representative X-ray attenuation histograms for femoral articular cartilage and bone incubated in 20% (C), 30% (D), 40% (E) and 50% Hexabrix solutions (F). Osteoarthritis and Cartilage 2009 17, 313-320DOI: (10.1016/j.joca.2008.07.015) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Validation of EPIC-μCT thickness measurements for rat tibial articular cartilage via needle probe testing. (A) An illustration of needle probe testing on tibial articular cartilage. (B) Representative force vs displacement curve showed regions of changing slope that indicated contact with cartilage and bone surfaces. The inset displays magnified data for the cartilage contact region. (C) Strong linear relationship between measurements of cartilage thickness obtained by EPIC-μCT and needle probing (slope=0.81, r2=0.95, n=43). (D) The differences (needle probing – EPIC-μCT) vs average cartilage thickness measured by needle probing and EPIC-μCT with 95% limits of agreement. Osteoarthritis and Cartilage 2009 17, 313-320DOI: (10.1016/j.joca.2008.07.015) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Evaluation of articular cartilage morphology during growth in male Wistar rats at 4, 8, and 16-weeks of age. (A) Representative images for intact distal femora, including bone (gray) and articular cartilage (white). (B) Representative thickness maps of segmented femoral articular cartilage. (C) Representative sagittal sections of each distal femur. Average cartilage volume (D), thickness (E), and surface area (F) for each age group (n=5, error bars indicate ±SD). *P<0.01 vs 4-week-old rats, #P<0.01 vs 8-week-old rats. Osteoarthritis and Cartilage 2009 17, 313-320DOI: (10.1016/j.joca.2008.07.015) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Histologic evaluation of rat femoral articular cartilage from male Wistar rats at 4, 8, and 16 weeks of age for validation of EPIC-μCT measurements. (A) Representative images from safranin-O staining of femoral articular cartilage. (B) Average thickness of femoral articular cartilage assessed via EPIC-μCT and histology (n=10, error bars indicate ±SD). (C) Strong linear relationship between measurements of cartilage thickness obtained by EPIC-μCT and histology (slope=0.97, r2=0.99). (D) The differences (histology – EPIC-μCT) vs average cartilage thickness measured by histology and EPIC-μCT with 95% limits of agreement (n=30). *P<0.01 vs 4-week-old rats, #P<0.01 vs 8-week-old rats. Osteoarthritis and Cartilage 2009 17, 313-320DOI: (10.1016/j.joca.2008.07.015) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions