A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 

Slides:



Advertisements
Similar presentations
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Advertisements

Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
2D and 3D MOCART scoring systems assessed by 9
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Diffusion of Gd-DTPA2− into articular cartilage
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
Differential accumulation of lead and zinc in double-tidemarks of articular cartilage  A. Roschger, J.G. Hofstaetter, B. Pemmer, N. Zoeger, P. Wobrauschek,
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
A.J. McGregor, B.G. Amsden, S.D. Waldman  Osteoarthritis and Cartilage 
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement- encoded MRI  D.D. Chan, C.P. Neu, M.L. Hull  Osteoarthritis.
Contrast Enhanced Computed Tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage  P.N. Bansal, N.S.
Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral.
Quantitative assessment of articular cartilage morphology via EPIC-μCT
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression  J.H. Lai, M.E. Levenston  Osteoarthritis and Cartilage 
The layered structure of the articular surface
R. Mahmoodian, J. Leasure, P. Philip, N. Pleshko, F. Capaldi, S
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
A.W. Palmer, C.G. Wilson, E.J. Baum, M.E. Levenston 
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage  L. Zevenbergen,
UTE bi-component analysis of T2* relaxation in articular cartilage
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Validation of a 40MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model  Mathieu P. Spriet, D.V.M., Christiane.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development  A.R.
Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient  R. Krishnan, M. Caligaris, R.L. Mauck, C.T.
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage  A.J. Griebel, S.B. Trippel, C.P. Neu  Osteoarthritis.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Presentation transcript:

The role of the superficial region in determining the dynamic properties of articular cartilage  A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage  Volume 20, Issue 11, Pages 1417-1425 (November 2012) DOI: 10.1016/j.joca.2012.08.005 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Schematic representation of testing configurations. (A) Diagram illustrating confined compression; σa indicating axial stress is applied in the arrow direction, (B) loading protocol at increasing strain levels (10, 20 and 30% strain). In addition, cyclic loading was applied at each strain level after equilibrium had been reached at 1% amplitude and 1 Hz frequency. (C) Graphic of an osteochondral core divided into layers: intact osteochondral core, less SR: remaining cartilage and subchondral bone, SR and remaining cartilage. (D) Diagram illustrating unconfined compression. During unconfined compression of the osteochondral cores radial displacement of the deepest cartilage layers is prevented by the attached subchondral bone. Osteoarthritis and Cartilage 2012 20, 1417-1425DOI: (10.1016/j.joca.2012.08.005) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Osteochondral sections stained with picrosirius red and safranin O from the femoral trochlear ridges. (A) Picrosirius red stained magnifications of a full thickness cartilage section, scale bar 200 μm (Left). (B) Picrosirius red stained magnifications imaged using PLM. A change in the direction of the polarised light known as birefringence occurs close to the articular surface and in the deep zone, allowing the visualisation of the differentiation between the highly organised superficial and deep zone and the non-birefringent MZ; scale bar 50 μm. (C) Safranin O stained magnifications displaying an increase in staining with depth correlating to an increase in sGAG content, scale bar 50 μm. Osteoarthritis and Cartilage 2012 20, 1417-1425DOI: (10.1016/j.joca.2012.08.005) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 sGAG content and total collagen content of SR and remaining cartilage disks of porcine articular cartilage per wet weight [%] obtained from the femoral trochlear ridges. Bars show the mean with 95% CI; n = 6; donors = 3. *P = 0.027. Osteoarthritis and Cartilage 2012 20, 1417-1425DOI: (10.1016/j.joca.2012.08.005) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Pixel intensity profiles of histological samples with depth from the articular surface of (A) safranin o stain and (B) picrosirius red stain. Figure (C) displays the average of these values correlating to specific regions; SR and the remaining cartilage. Bars show mean with 95% CI. The dashed line indicates the top 25% of the total cartilage thickness i.e., from the articular surface to the base of the cartilage. *P = 0.026. Osteoarthritis and Cartilage 2012 20, 1417-1425DOI: (10.1016/j.joca.2012.08.005) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 (A) Aggregate moduli and dynamic moduli in confined compression of full thickness osteochondral cores and less the SR of porcine articular cartilage obtained from the femoral trochlear ridges. Bars show the mean ± 95% CI, n = 9. (B) Compressive stiffness (σequil/ε) and dynamic stiffness in unconfined compression of the same testing configuration as outlined above. Bars show the mean ± 95% CI, n = 9. All dynamic testing was carried out at 1 Hz freq. and 1% amplitude at increasing levels of offset strain ε: 10, 20 and 30%. Connecting line does not imply linear relationship with strain. In A and B, ‘a’ indicates a significant difference vs ‘Intact Osteochondral Core’ (10% ε), ‘b’ indicates a significant difference vs ‘Intact Osteochondral Core’ (20% ε), ‘c’ indicates a significant difference vs ‘Intact Osteochondral Core’ (30% ε),‘d’ indicates a significant difference vs ‘Less Superficial Region’ (10% ε). Specific P values for these differences are as follows: α: P = 0.0035, β: P = 0.0053, γ: P < 0.0001, δ: P = 0.0093, ε: P = 0.0049, ζ: P = 0.0015, η: P = 0.0001, θ: P = 0.0016, ι: P = 0.0037, κ: P = 0.0032, λ: P = 0.0033. Osteoarthritis and Cartilage 2012 20, 1417-1425DOI: (10.1016/j.joca.2012.08.005) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Peak stress: equilibrium stress ratio in unconfined compression at increasing levels of offset strain ε: 10, 20 and 30% of full thickness osteochondral cores and less the SR of porcine articular cartilage obtained from the femoral trochlear ridges. Bars show the mean ± 95% CI, n = 9. Connecting line does not imply linear relationship with strain. Osteoarthritis and Cartilage 2012 20, 1417-1425DOI: (10.1016/j.joca.2012.08.005) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 (A) Aggregate moduli and dynamic moduli in confined compression of the SR and remaining cartilage disks of porcine articular cartilage obtained from the femoral trochlear ridges. Bars show the mean ± 95% CI, n = 7. (B) Equilibrium moduli and dynamic moduli in unconfined compression of the same testing configuration as outlined above. Bars show the mean ± 95% CI, n = 7. All dynamic testing was carried out at 1 Hz freq. and 1% amplitude at increasing levels of offset strain ε: 10, 20 and 30%. Connecting line does not imply linear relationship with strain. In A and B, ‘a’ indicates a significant difference vs ‘Superficial Region’ (10% ε), ‘b’ indicates a significant difference vs ‘Superficial Region’ (20% ε), ‘c’ indicates a significant difference vs ‘Superficial Region’ (30% ε). Specific P values for these differences are as follows: α: P = 0.05, β: P = 0.0401, γ: P = 0.0386, δ: P = 0.0001, ε: P = 0.0147, ζ: P = 0.0185, η: P = 0.0104. Osteoarthritis and Cartilage 2012 20, 1417-1425DOI: (10.1016/j.joca.2012.08.005) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions