Cell columns in articular cartilage physes questioned: a review

Slides:



Advertisements
Similar presentations
HISTOLOGY 1.10: OSTEOGENESIS
Advertisements

CARTILAGE AND BONE Similarities Living cells embedded in a matrix produced by themselves Cells occupy spaces in the matrix called lacunae Both develop.
PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.
Chapter 6 - Bones and Skeletal Tissue
Rickets- radiology Dr jp,asst prof,ich,mch,kottayam.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Fundamentals of Anatomy & Physiology SIXTH EDITION Frederic H. Martini PowerPoint.
Ch 6.4-Bone Formation.
Bone Tissue. Support Provides attachment for tendons of skeletal muscles Provides attachment for tendons of skeletal muscles.
Forth Lecture: Development of Bone Dr. Wahda Kharofa.
Aim: How can we describe the steps of endochondral ossification?
6-1 Chapter 6 The Skeletal System:Bone Tissue Dynamic and ever-changing throughout life Skeleton composed of many different tissues –cartilage, bone tissue,
Objectives: At the end of this pair of practical classes you should be able to : 1. Recognise and distinguish between hyaline, fibro- and elastic cartilage.
1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 7.
Chitosan–glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects  C.D.
Bone development. A. Intramembranous ossification in a cross-section through a canine embryonic limb bone. At the top of the image a row of osteoblasts,
Osteoarthritis cartilage histopathology: grading and staging
Cartilage and bone 李盛芳 武玉玲.
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage  A.-C. Bay-Jensen,
Skeletal System.
D.A. Houston, A.K. Amin, T.O. White, I.D.M. Smith, A.C. Hall 
Chondrocyte moves: clever strategies?
The groove model of osteoarthritis applied to the ovine fetlock joint
Volume 93, Issue 3, Pages (May 1998)
Chitosan–glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects  C.D.
Skeletal System.
Angiogenesis in two animal models of osteoarthritis
Histology Slides for Bone Tissues
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
J.G Costouros, M.D., A.C Dang, H.T Kim, M.D., Ph.D. 
The short-term therapeutic effect of recombinant human bone morphogenetic protein-2 on collagenase-induced lumbar facet joint osteoarthritis in rats 
Reduced chondrocyte proliferation, earlier cell cycle exit and increased apoptosis in neuronal nitric oxide synthase-deficient mice  Q. Yan, Q. Feng,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Mechanisms of arterial graft failure. II
Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits  H. Chen, A. Chevrier,
D.W. Jackson, M.D., T.M. Simon, Ph.D.  Osteoarthritis and Cartilage 
The extent of degeneration of cruciate ligament is associated with chondrogenic differentiation in patients with osteoarthritis of the knee  K. Kumagai,
A. Ludin, J.J. Sela, A. Schroeder, Y. Samuni, D.W. Nitzan, G. Amir 
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Macroscopic structure of bone
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle  M. Doube, B.Phil., B.V.Sc., Professor.
Osteoarthritis cartilage histopathology: grading and staging
The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study  G. Tardif, Ph.D., J.-P. Pelletier,
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
Nonlinear optical microscopy of articular cartilage
On new bone formation in the pre-osteoarthritic joint
E.B. Hunziker, M.D., A. Stähli, D.M.D.  Osteoarthritis and Cartilage 
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
Osteoarthritis year 2010 in review: non-pharmacologic therapy
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
The role of joint architecture in the etiology of arthritis1 1 Supported by Procter & Gamble Pharmaceuticals, Mason, OH.  Peter G. Bullough, M.B., Ch.B. 
Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis  T. Vinardell, D.V.M., I.P.S.A.V., M.Sc.,
Regeneration of articular cartilage – Evaluation of osteochondral defect repair in the rabbit using multiphasic implants  S.R. Frenkel, Ph.D., G. Bradica,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
P. Kang, Y. Yao, J. Yang, B. Shen, Z. Zhou, F. Pei 
Articular cartilage metabolism in patients with Kashin–Beck Disease: an endemic osteoarthropathy in China  J. Cao, M.D., S. Li, M.D., M.Sc., Z. Shi, M.Sc.,
In vivo imaging of cartilage degeneration using μCT-arthrography
The association between hip bone marrow lesions and bone mineral density: a cross- sectional and longitudinal population-based study  H. Ahedi, D. Aitken,
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
Histology of bones Dr Maha ELBeltagy 2018.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model  G. Milano,
The chondrocyte primary cilium
General Information Osteoarthritis and Cartilage
Presentation transcript:

Cell columns in articular cartilage physes questioned: a review Dr P.D. Byers, B.Sc., M.D., Ph.D., F.R.C.Path., R.A. Brown, B.Sc., Ph.D.  Osteoarthritis and Cartilage  Volume 14, Issue 1, Pages 3-12 (January 2006) DOI: 10.1016/j.joca.2005.08.008 Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 The nomenclature employed to specify physeal sites. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Section showing ossified cartilage. a. Lacuna developed from a cartilage cell. b. Lines of granules (tide line). From Tomes and De Morgan10(Plate VII, fig 17). By kind permission of the Royal Society of Medicine, London. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 (A) Longitudinal section of metaphyseal physis of calf embryo metatarsal. (B) Longitudinal section of calf phalanx epiphysis. Chromic acid preparations. 350×. These illustrate the contrasting patterns of cell distribution and mineral deposition at these physes12(figs 1 and 3). By kind permission of the Royal Society of Medicine, London. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Ossifying border of a growing astragalus. c. Cartilage with smallish groups of cells. p. The layer where the proliferation and enlargement are most marked along the line of calcification; the dark mass represents the deposition of calcification. m. Medullary spaces13(fig 126). By kind permission of the Royal Society of Medicine, London. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 (A and B) First metacarpal of 3 year old boy. (A) Distal (non-epiphyseal) end: a tide line demarcates a continuous band of mineral enclosing cell clusters, which are also present in the hypertrophic zone. (B) Proximal end: metaphyseal physis with well developed columns. The labels are Haines': c.cm. cartilage columns, (in A he qualified these as poorly developed); t.l. tide line30(figs 11 and 12). With permission of Blackwell Publishing, Oxford. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 Conjoined epiphyseal physis of 15 day old pig. It is composed of cell nests embedded in mineralised matrix (not stained). (Published legend: “Large and small arrows point respectively to light and dark chondrocytes”) Decalcified, paraffin embedded, 0.4M MgCl2 stain31(fig 4). With permission of the American Journal of Veterinary Research. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 8 (A) Published legend: ‘‘Epiphyseal centre. Cartilage cells in nests. Osteoclasts wanting at very front of marrow invasion, but plentiful a short distance back. From radius of young pup. !92’’ (B) Published legend: Proximal end of metacarpal bone of growing pup; similar to epiphyseal centre. Shows uncalcified walls between cell in nests and some calcified areas between adjacent nests. Marrow is advancing from left and is about to enter one nest at lower left corner. x37533(figs 17 and 18). Reprinted by permission of Wiley–Liss, Inc., a subsidiary of John Wiley & Sons, Inc. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 9 (A and B) Proximal humeral epiphyses. (A) 2 day old pup; four foci of perinuclear mineralisation. (B) 4 day old pup; coalescing foci of mineralisation. Von Kossa stain 22(figs 5 and 7). Reprinted with permission of Wiley–Liss, Inc., a subsidiary of John Wiley & Sons, Inc. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 11 Histological section prepared from non-epiphyseal end of a metacarpal of a 3 year old child to demonstrate “Early penetration of ossification process from metaphysis into the (distal end) epiphysis”. A tide line demarcates a continuous band of mineral enclosing cell clusters, which are also present in the hypertrophic zone. Resorption bays have extended into the calcified cartilage; on the surface of at least one osteoblasts are present. The authors' opinion: “It is impossible to say whether this invasive pattern would lead to typical expansile ossification or to a pseudoepiphysis”55(fig 1). With permission of Lippincott Williams and Wilkins. Osteoarthritis and Cartilage 2006 14, 3-12DOI: (10.1016/j.joca.2005.08.008) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions