The Role of Membrane Carbohydrates in Cell-Cell Recognition

Slides:



Advertisements
Similar presentations
Chapter 7 7.2, 7.3.
Advertisements

BIO 107 Lab # 4 Cell membranes, Osmosis & Diffusion
© 2011 Pearson Education, Inc. LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman,
Chapter 7.2
AP Bio Chap 7 Osmosis and Diffusion. So, how does a membrane regulates what goes in and out? Depends on: 1)Lipid solubility - Hydrophobic molecules, such.
Membrane Structure and Function
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Diploma In Microbiology MIC102 CHAPTER 2 Movement In And Out Of Cell Lecturer: Pn Aslizah Binti Mohd Aris /
Membrane Structure & Function cont. I. Membrane Protein Function II. Cellular Transport.
The Plasma Membrane Fluid Dynamics and Cell Transportation.
NOTES: CH 7 part 2 - Transport Across the Cell Membrane ( )
Overview: Life at the Edge The plasma membrane is the boundary that separates the living cell from its surroundings The plasma membrane exhibits selective.
Chapter 7: The Cell Membrane. Overview: Life at the Edge Plasma membrane- the boundary that separates the living cell from its surroundings The plasma.
Chapter 7 Membrane Structure and Function. Fibers of extracellular matrix (ECM) Glycoprotein Carbohydrate Microfilaments of cytoskeleton Cholesterol Integral.
Membrane Structure and Function
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The plasma membrane The plasma membrane is the boundary that separates the internal.
Osmosis. Overview The plasma membrane is the boundary that separates the living cell from its surroundings – It controls what goes in and what goes out.
Topic 5. The Plasma Membrane Structure & Function September 26, 2005 Biology 1001.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
MEMBRANE STRUCTURE AND FUNCTION CHAPTER 7 PART 2.
Chapter 7 Membrane Structure and Function. You should now be able to: 1.Define the following terms: amphipathic molecules, aquaporins, diffusion 2.Explain.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: Life at the Edge The plasma membrane is the boundary that separates.
Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane.
ENDURING UNDERSTANDING 2.B GROWTH, REPRODUCTION AND DYNAMIC HOMEOSTASIS REQUIRE THAT CELLS CREATE AND MAINTAIN INTERNAL ENVIRONMENTS THAT ARE DIFFERENT.
LEQ: What are the mechanisms that move materials into and out of a cell? Cell Transport part 1 Pages 81 to 83.
Membrane Structure and Function Chapter 7 Biology – Campbell Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Overview: Lab Cell membrane The plasma membrane is the boundary that separates the living cell from its surroundings The plasma membrane exhibits selective.
The Cell Membrane & Passive Transport. The cell membrane is the boundary that separates the living cell from its surroundings Life has an inside and an.
Overview: Life at the Edge The plasma membrane is the boundary that separates the living cell from its surroundings The plasma membrane exhibits selective.
Chapter 7 – Membrane Structure/Function and Cell Transport.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter Notes. Overview: Life at the Edge The plasma membrane separates the living cell from its surroundings The plasma membrane exhibits selective.
Chapter 7 Review Membrane Structure and Function.
Chapter 7- Cell Membrane. Overview: Life at the Edge The plasma membrane is the boundary that separates the living cell from its surroundings The plasma.
Diffusion, osmosis, and the cell membrane. A membrane is a collage of different proteins embedded in the fluid matrix of the lipid bilayer. 1. Membranes.
Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins Phospholipids are the most abundant lipid in the plasma membrane Phospholipids.
Membrane Structure and Function Chapter 7.  The plasma membrane  Is the boundary that separates the living cell from its nonliving surroundings.
Copyright © 2009 Pearson Education, Inc. PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey.
Membrane Structure and Function Chapter 7. Overview: Life at the Edge The plasma membrane is the boundary that separates the living cell from its surroundings.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
In a hypertonic environment, plant cells lose water; eventually, the membrane pulls away from the wall, a usually lethal effect called plasmolysis Video:
Membrane Structure and Function
Membrane Transport and Cell Signaling
Lab # 5 Biology 201 Medgar evers college fall 2017
Membrane Structure and Function
How things get into and out of the cell
Chapter 7 Membrane Structure and Function ..
Membrane Structure and Function
Fig. 7-1 Figure 7.1 How do cell membrane proteins help regulate chemical traffic?
Membrane Structure and Function
Membrane Structure and Function
Traffic Across Membranes
A membrane’s molecular organization results in selective permeability
Biology 101 Medgar Evers College Fall 2017
Synthesis and Sidedness of Membranes
Membrane Structure and Function
Passive Transport Section 5.4.
Membrane Structure and Function
Effects of Osmosis on Water Balance
Membrane Structure, Synthesis, and Transport
Concept 7.2: Membrane structure results in selective permeability
Membrane Structure and Function
The POGIL quiz is postponed until Monday.
Membrane Structure and Function
Membrane Structure and Function
WATER Hydrophilic head Hydrophobic tail WATER Figure 7.2
Membrane Structure and Function
Membrane Structure and Function
General Animal Biology
Presentation transcript:

The Role of Membrane Carbohydrates in Cell-Cell Recognition Cells recognize each other by binding to surface molecules, often carbohydrates, on the plasma membrane Membrane carbohydrates may be covalently bonded to lipids (forming glycolipids) or more commonly to proteins (forming glycoproteins) Carbohydrates on the external side of the plasma membrane vary among species, individuals, and even cell types in an individual Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Synthesis and Sidedness of Membranes Membranes have distinct inside and outside faces The asymmetrical distribution of proteins, lipids, and associated carbohydrates in the plasma membrane is determined when the membrane is built by the ER and Golgi apparatus Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

ER 1 Transmembrane glycoproteins Secretory protein Glycolipid Golgi 2 Fig. 7-10 ER 1 Transmembrane glycoproteins Secretory protein Glycolipid Golgi apparatus 2 Vesicle Figure 7.10 Synthesis of membrane components and their orientation on the resulting membrane 3 Plasma membrane: Cytoplasmic face 4 Extracellular face Transmembrane glycoprotein Secreted protein Membrane glycolipid

Concept 7.2: Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane Plasma membranes are selectively permeable, regulating the cell’s molecular traffic Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Permeability of the Lipid Bilayer Hydrophobic (nonpolar) molecules, such as hydrocarbons, can dissolve in the lipid bilayer and pass through the membrane rapidly Polar molecules, such as sugars, do not cross the membrane easily Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Channel proteins called aquaporins facilitate the passage of water Transport Proteins Transport proteins allow passage of hydrophilic substances across the membrane Some transport proteins, called channel proteins, have a hydrophilic channel that certain molecules or ions can use as a tunnel Channel proteins called aquaporins facilitate the passage of water Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A transport protein is specific for the substance it moves Other transport proteins, called carrier proteins, bind to molecules and change shape to shuttle them across the membrane A transport protein is specific for the substance it moves Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Animation: Membrane Selectivity Concept 7.3: Passive transport is diffusion of a substance across a membrane with no energy investment Diffusion is the tendency for molecules to spread out evenly into the available space Although each molecule moves randomly, diffusion of a population of molecules may exhibit a net movement in one direction At dynamic equilibrium, as many molecules cross one way as cross in the other direction Animation: Membrane Selectivity Animation: Diffusion Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Membrane (cross section) Fig. 7-11 Molecules of dye Membrane (cross section) WATER Net diffusion Net diffusion Equilibrium (a) Diffusion of one solute Figure 7.11 The diffusion of solutes across a membrane Net diffusion Net diffusion Equilibrium Net diffusion Net diffusion Equilibrium (b) Diffusion of two solutes

Membrane (cross section) Fig. 7-11a Molecules of dye Membrane (cross section) WATER Figure 7.11a The diffusion of solutes across a membrane Net diffusion Net diffusion Equilibrium (a) Diffusion of one solute

Substances diffuse down their concentration gradient, the difference in concentration of a substance from one area to another No work must be done to move substances down the concentration gradient The diffusion of a substance across a biological membrane is passive transport because it requires no energy from the cell to make it happen Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(b) Diffusion of two solutes Fig. 7-11b Net diffusion Net diffusion Equilibrium Figure 7.11b The diffusion of solutes across a membrane Net diffusion Net diffusion Equilibrium (b) Diffusion of two solutes

Effects of Osmosis on Water Balance Osmosis is the diffusion of water across a selectively permeable membrane Water diffuses across a membrane from the region of lower solute concentration to the region of higher solute concentration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Higher concentration Lower Same concentration concentration of sugar Fig. 7-12 Lower concentration of solute (sugar) Higher concentration of sugar Same concentration of sugar H2O Selectively permeable membrane Figure 7.12 Osmosis Osmosis

Water Balance of Cells Without Walls Tonicity is the ability of a solution to cause a cell to gain or lose water Isotonic solution: Solute concentration is the same as that inside the cell; no net water movement across the plasma membrane Hypertonic solution: Solute concentration is greater than that inside the cell; cell loses water Hypotonic solution: Solute concentration is less than that inside the cell; cell gains water Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

cell cell Hypotonic solution Isotonic solution Hypertonic solution H2O Fig. 7-13 Hypotonic solution Isotonic solution Hypertonic solution H2O H2O H2O H2O (a) Animal cell Lysed Normal Shriveled H2O H2O H2O H2O Figure 7.13 The water balance of living cells (b) Plant cell Turgid (normal) Flaccid Plasmolyzed

Video: Paramecium Vacuole Hypertonic or hypotonic environments create osmotic problems for organisms Osmoregulation, the control of water balance, is a necessary adaptation for life in such environments The protist Paramecium, which is hypertonic to its pond water environment, has a contractile vacuole that acts as a pump Video: Chlamydomonas Video: Paramecium Vacuole Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(a) A contractile vacuole fills with fluid that enters from Fig. 7-14 50 µm Filling vacuole (a) A contractile vacuole fills with fluid that enters from a system of canals radiating throughout the cytoplasm. Contracting vacuole Figure 7.14 The contractile vacuole of Paramecium: an evolutionary adaptation for osmoregulation (b) When full, the vacuole and canals contract, expelling fluid from the cell.

Water Balance of Cells with Walls Cell walls help maintain water balance A plant cell in a hypotonic solution swells until the wall opposes uptake; the cell is now turgid (firm) If a plant cell and its surroundings are isotonic, there is no net movement of water into the cell; the cell becomes flaccid (limp), and the plant may wilt Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

In a hypertonic environment, plant cells lose water; eventually, the membrane pulls away from the wall, a usually lethal effect called plasmolysis Video: Plasmolysis Video: Turgid Elodea Animation: Osmosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Facilitated Diffusion: Passive Transport Aided by Proteins In facilitated diffusion, transport proteins speed the passive movement of molecules across the plasma membrane Channel proteins provide corridors that allow a specific molecule or ion to cross the membrane Channel proteins include Aquaporins, for facilitated diffusion of water Ion channels that open or close in response to a stimulus (gated channels) For the Cell Biology Video Water Movement through an Aquaporin, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Channel protein Solute (a) A channel protein Solute Carrier protein Fig. 7-15 EXTRACELLULAR FLUID Channel protein Solute CYTOPLASM (a) A channel protein Figure 7.15 Two types of transport proteins that carry out facilitated diffusion Solute Carrier protein (b) A carrier protein

Carrier proteins undergo a subtle change in shape that translocates the solute-binding site across the membrane Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Some diseases are caused by malfunctions in specific transport systems, for example the kidney disease cystinuria Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings