Maxim E. Dokukin, Nataliia V. Guz, Igor Sokolov  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare? Yonggun Jun, Suvranta K. Tripathy, Babu R.J. Narayanareddy,
Advertisements

Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
The Importance of the Hook Region of the Cochlea for Bone-Conduction Hearing Namkeun Kim, Charles R. Steele, Sunil Puria Biophysical Journal Volume 107,
Cell Traction Forces Direct Fibronectin Matrix Assembly Christopher A. Lemmon, Christopher S. Chen, Lewis H. Romer Biophysical Journal Volume 96, Issue.
Mapping Three-Dimensional Stress and Strain Fields within a Soft Hydrogel Using a Fluorescence Microscope  Matthew S. Hall, Rong Long, Chung-Yuen Hui,
Volume 99, Issue 8, Pages (October 2010)
Volume 106, Issue 6, Pages (March 2014)
Volume 104, Issue 1, Pages (January 2013)
Benoit Tesson, Michael I. Latz  Biophysical Journal 
Mechanical Properties of Actin Stress Fibers in Living Cells
Bipedal Locomotion in Crawling Cells
Volume 109, Issue 2, Pages (July 2015)
Unsteady Motion, Finite Reynolds Numbers, and Wall Effect on Vorticella convallaria Contribute Contraction Force Greater than the Stokes Drag  Sangjin.
Guillaume T. Charras, Mike A. Horton  Biophysical Journal 
The Nano-Scale Mechanical Properties of the Extracellular Matrix Regulate Dermal Fibroblast Function  Volker F. Achterberg, Lara Buscemi, Heike Diekmann,
M.G. Mendez, D. Restle, P.A. Janmey  Biophysical Journal 
Volume 98, Issue 12, Pages (June 2010)
Volume 102, Issue 11, Pages (June 2012)
Shijie He, Chenglin Liu, Xiaojun Li, Shaopeng Ma, Bo Huo, Baohua Ji 
The Origin of Short Transcriptional Pauses
Volume 107, Issue 11, Pages (December 2014)
Philipp J. Albert, Ulrich S. Schwarz  Biophysical Journal 
Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy  G. Gramse, A. Dols-Perez,
Susanne Karsch, Deqing Kong, Jörg Großhans, Andreas Janshoff 
Volume 101, Issue 11, Pages (December 2011)
Volume 111, Issue 10, Pages (November 2016)
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 100, Issue 8, Pages (April 2011)
Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 
Worms under Pressure: Bulk Mechanical Properties of C
Jai A. Pathak, Rumi R. Sologuren, Rojaramani Narwal 
Volume 98, Issue 11, Pages (June 2010)
Volume 102, Issue 11, Pages (June 2012)
Rainer Kurre, Berenike Maier  Biophysical Journal 
Anne Marie W. Bartosch, Rick Mathews, John M. Tarbell 
Stiffness Tomography by Atomic Force Microscopy
Cholesterol Depletion Mimics the Effect of Cytoskeletal Destabilization on Membrane Dynamics of the Serotonin1A Receptor: A zFCS Study  Sourav Ganguly,
Anton Arkhipov, Wouter H. Roos, Gijs J.L. Wuite, Klaus Schulten 
Volume 87, Issue 4, Pages (October 2004)
Michael J. Rosenbluth, Wilbur A. Lam, Daniel A. Fletcher 
Volume 112, Issue 2, Pages (January 2017)
Stefan Nehls, Andreas Janshoff  Biophysical Journal 
Volume 74, Issue 5, Pages (May 1998)
Shamik Sen, Shyamsundar Subramanian, Dennis E. Discher 
Substrate Deformation Predicts Neuronal Growth Cone Advance
Volume 107, Issue 11, Pages (December 2014)
Luthur Siu-Lun Cheung, Konstantinos Konstantopoulos 
In Situ Mechanical Analysis of Myofibrillar Perturbation and Aging on Soft, Bilayered Drosophila Myocardium  Gaurav Kaushik, Alexander Fuhrmann, Anthony.
Lipeng Lai, Xiaofeng Xu, Chwee Teck Lim, Jianshu Cao 
Quantitative Membrane Electrostatics with the Atomic Force Microscope
Lori R. Nyland, David W. Maughan  Biophysical Journal 
Volume 86, Issue 5, Pages (May 2004)
Adam Sokolow, Yusuke Toyama, Daniel P. Kiehart, Glenn S. Edwards 
Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy  R.E. Mahaffy, S. Park, E. Gerde, J.
Volume 101, Issue 7, Pages (October 2011)
Volume 91, Issue 2, Pages (July 2006)
Volume 95, Issue 2, Pages (July 2008)
R. Gueta, D. Barlam, R.Z. Shneck, I. Rousso  Biophysical Journal 
Volume 108, Issue 12, Pages (June 2015)
Eric D. Siggia, Jennifer Lippincott-Schwartz, Stefan Bekiranov 
Bending and Puncturing the Influenza Lipid Envelope
Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy  G. Gramse, A. Dols-Perez,
Change in Rigidity in the Activated Form of the Glucose/Galactose Receptor from Escherichia coli: A Phenomenon that Will Be Key to the Development of.
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Volume 107, Issue 9, Pages (November 2014)
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Ai Kia Yip, Pei Huang, Keng-Hwee Chiam  Biophysical Journal 
Volume 101, Issue 7, Pages (October 2011)
Volume 110, Issue 11, Pages (June 2016)
Volume 110, Issue 12, Pages (June 2016)
Presentation transcript:

Quantitative Study of the Elastic Modulus of Loosely Attached Cells in AFM Indentation Experiments  Maxim E. Dokukin, Nataliia V. Guz, Igor Sokolov  Biophysical Journal  Volume 104, Issue 10, Pages 2123-2131 (May 2013) DOI: 10.1016/j.bpj.2013.04.019 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 Schematics of the interaction between an AFM spherical indenter (probe) and (a) firmly and (b) loosely attached cells. Deformations of both the cell body and surrounding cellular brush are shown. Z is the relative position of the cantilever; d is the cantilever deflection; Z0 is nondeformed position of the cell body; i, itop, and ibottom are the deformations of the cell body; h and htop are the separation distances between the cell body and the probe; and hbottom is the distance between the cell body and substrate. Biophysical Journal 2013 104, 2123-2131DOI: (10.1016/j.bpj.2013.04.019) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 Representative optical images of firmly (well-spread images) and loosely (spherical images) adhered cells. (Right panel, inset) Confocal side view of both well-spread and spherical-looking cells. Confocal images are not to scale (the heights of cells in the confocal images are between 10 and 20 μm). Biophysical Journal 2013 104, 2123-2131DOI: (10.1016/j.bpj.2013.04.019) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 A representative example of the processing of the force-indentation curves for the case of firmly adhered cells. (a) Raw data and partial fitting of the curve with Eqs. 1 and 2. The fitting parameters were Z0 and the Young’s modulus; (b) dependence of the derived Young’s modulus on the indentation depth; and (c) fitting of the cellular brush with Eq. 4 (done and shown for 0.2 < h/L < 0.9). Biophysical Journal 2013 104, 2123-2131DOI: (10.1016/j.bpj.2013.04.019) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 A representative example of the processing of the force-indentation curves for the case of loosely adhered cells. (a) Raw data and partial fitting of the curve with Eqs. 6 and 7. The fitting parameters were Z0 and the Young’s modulus; (b) dependence of the derived Young’s modulus on indentation; and (c) fitting of the cellular brush with Eq. 11 (done and shown for 0.2 < h/L < 0.9). Biophysical Journal 2013 104, 2123-2131DOI: (10.1016/j.bpj.2013.04.019) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 5 The distribution of the Young’s modulus calculated using the brush models for (a) firmly and (b) loosely attached cells, and using Hertz model for (c) firmly and (d) loosely attached cells. Biophysical Journal 2013 104, 2123-2131DOI: (10.1016/j.bpj.2013.04.019) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 6 A representative example of processing of raw force data (Z versus d) with the Hertz model (Eq. 12). Scattered points represent the raw experimental data. (a) Fitting on the entire range of forces. (b) Fitting of the initial part of the force curve (small deflections/forces; see dashed line for the mathematical extrapolation outside the fitting region). (c) Dependence of the Young’s modulus derived with the Hertz model on the indentation depth. Biophysical Journal 2013 104, 2123-2131DOI: (10.1016/j.bpj.2013.04.019) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 7 Distributions of the brush length (L) and grafting density (N) are shown for (a and c) firmly attached and (b and d) loosely attached cells, respectively. Biophysical Journal 2013 104, 2123-2131DOI: (10.1016/j.bpj.2013.04.019) Copyright © 2013 Biophysical Society Terms and Conditions