Angles Formed by Parallel Lines and Transversals 3-2

Slides:



Advertisements
Similar presentations
Angles Formed by Parallel Lines and Transversals
Advertisements

Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Use Parallel Lines and Transversals 3-2
Objective Use the angles formed by a transversal to prove two lines are parallel.
Proving Lines Parallel (3-3)
Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5
3-3 Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt McDougal Geometry 3-2 Angles Formed by Parallel Lines and Transversals 3-2 Angles Formed by Parallel Lines and Transversals Holt Geometry Section.
Holt McDougal Geometry 3-2 Angles Formed by Parallel Lines and Transversals Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4.
Warm Up Identify each angle pair. (yes you should draw the diagram) 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7 same-side int s corr. s alt.
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
PARALLEL LINES CUT BY A TRANSVERSAL. Holt McDougal Geometry Angles Formed by Parallel Lines and Transversals.
Example 2: Classifying Pairs of Angles
Angles Formed by Parallel Lines and Transversals 3-2
3-5 Using Properties of Parallel Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 3-2 Angles Formed by Parallel Lines and Transversals 3-2 Angles Formed by Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson.
WARM UP Identify each angle pair and and and and 7 Corresponding angles Alternate interior angles Alternate exterior angles.
Flowchart and Paragraph Proofs
3.1 – 3.2 Quiz Review Identify each of the following.
Angles Formed by Parallel Lines and Transversals 3-2
14. AB // DE 2 and  AB and CF 1 and 5
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
3.3 Proving Lines are Parallel
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Proving Lines Parallel
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Parallel Lines & Transversals
21.1 Objective Prove and use theorems about the angles formed by parallel lines and a transversal.
Pearson Unit 1 Topic 3: Parallel and Perpendicular Lines 3-2: Properties of Parallel Lines Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
3.2 BUILDING ON 3.1… Relationships for angle pairs of parallel lines with a transversal: corresponding angles alternate interior angles alternate exterior.
Angles Formed by Parallel Lines and Transversals 3-2
Parallel Lines and Transversals
Proving Lines Parallel
Proving Lines Are Parallel
Day 7 (2/20/18) Math 132 CCBC Dundalk.
3.2 BUILDING ON 3.1… Relationships for angle pairs of parallel lines with a transversal: corresponding angles alternate interior angles alternate exterior.
Drill: Monday, 11/7 Identify each angle pair. 1. 1 and 3
Objective Use the angles formed by a transversal to prove two lines are parallel.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Proving Lines Parallel
Parallel Lines and Transversals
Objectives Identify parallel, perpendicular, and skew lines.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Objective Prove and use theorems about the angles formed by parallel lines and a transversal.
3.2 – Use Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Lesson 3 – 5 Proving Lines Parallel
Angles Formed by Parallel Lines and Transversals 3-2
3.2 Parallel Lines and Transversals.
Presentation transcript:

Angles Formed by Parallel Lines and Transversals 3-2 Warm Up Lesson Presentation Lesson Quiz Holt Geometry

Do Now Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7

Objective TSW prove and use theorems about the angles formed by parallel lines and a transversal.

Example 1: Using the Corresponding Angles Postulate Find each angle measure. A. mDCE B. mECF

Example 2 Find mQRS.

If a transversal is perpendicular to two parallel lines, all eight angles are congruent. Helpful Hint

Remember that postulates are statements that are accepted without proof. Since the Corresponding Angles Postulate is given as a postulate, it can be used to prove the next three theorems.

Example 3: Finding Angle Measures Find each angle measure. A. mEDG B. mBDG

Example 4 Find mABD. mABD=2x+10 mCDE=3x-15

Example 5: Music Application Find x and y in the diagram.

Example 6 Find the measures of the acute angles in the diagram. By the Alternate Exterior Angles Theorem, (25x + 5y)° = 125°. By the Corresponding Angles Postulate, (25x + 4y)° = 120°. An acute angle will be 180° – 125°, or 55°. The other acute angle will be 180° – 120°, or 60°.

Lesson Quiz State the theorem or postulate that is related to the measures of the angles in each pair. Then find the unknown angle measures. 1. m1 = 120°, m2 = (60x)° 2. m2 = (75x – 30)°, m3 = (30x + 60)° 3. m3 = (50x + 20)°, m4= (100x – 80)° 4. m3 = (45x + 30)°, m5 = (25x + 10)°

Lesson Quiz State the theorem or postulate that is related to the measures of the angles in each pair. Then find the unknown angle measures. 1. m1 = 120°, m2 = (60x)° 2. m2 = (75x – 30)°, m3 = (30x + 60)° Alt. Ext. s Thm.; m2 = 120° Corr. s Post.; m2 = 120°, m3 = 120° 3. m3 = (50x + 20)°, m4= (100x – 80)° 4. m3 = (45x + 30)°, m5 = (25x + 10)° Alt. Int. s Thm.; m3 = 120°, m4 =120° Same-Side Int. s Thm.; m3 = 120°, m5 =60°