Tree -decomposition *5499016 竹内 和樹 *5499023 藤井 勲.

Slides:



Advertisements
Similar presentations
Connectivity - Menger’s Theorem Graphs & Algorithms Lecture 3.
Advertisements

Every edge is in a red ellipse (the bags). The bags are connected in a tree. The bags an original vertex is part of are connected.
Minimum Spanning Tree Sarah Brubaker Tuesday 4/22/8.
1 A Faster Approximation Algorithm For The Steiner Problem In Graphs Kurt Mehlhorn. Information Processing Letters, 27(3):125–128, 高等演算法二
Minimum cost spanning tree and activity networks Data structure 2002/12/2.
© 2004 Goodrich, Tamassia Breadth-First Search1 CB A E D L0L0 L1L1 F L2L2.
Breadth-First Search Seminar – Networking Algorithms CS and EE Dept. Lulea University of Technology 27 Jan Mohammad Reza Akhavan.
The Complexity of the Network Design Problem Networks, 1978 Classic Paper Reading
Graph Algorithms: Minimum Spanning Tree We are given a weighted, undirected graph G = (V, E), with weight function w:
Convex Grid Drawings of 3-Connected Plane Graphs Erik van de Pol.
Lecture 10 Topics Application of DFS Topological Sort
Breadth-First Search1 Part-H3 Breadth-First Search CB A E D L0L0 L1L1 F L2L2.
Graph Triangulation by Dmitry Pidan Based on the paper “A sufficiently fast algorithm for finding close to optimal junction tree” by Ann Becker and Dan.
Utrecht, february 22, 2002 Applications of Tree Decompositions Stan van Hoesel KE-FdEWB Universiteit Maastricht
CTIS 154 Discrete Mathematics II1 8.2 Paths and Cycles Kadir A. Peker.
1 Internet Networking Spring 2002 Tutorial 6 Network Cost of Minimum Spanning Tree.
The Mathematics of Networks Chapter 7. Trees A tree is a graph that –Is connected –Has no circuits Tree.
More Chapter 7: Greedy Algorithms Kruskal’s Minimum Spanning Tree Algorithm.
1 Quantum query complexity of some graph problems C. DürrUniv. Paris-Sud M. HeiligmanNational Security Agency P. HøyerUniv. of Calgary M. MhallaInstitut.
1 Min-cut for Undirected Graphs Given an undirected graph, a global min-cut is a cut (S,V-S) minimizing the number of crossing edges, where a crossing.
7.1 and 7.2: Spanning Trees. A network is a graph that is connected –The network must be a sub-graph of the original graph (its edges must come from the.
Module 5 – Networks and Decision Mathematics Chapter 23 – Undirected Graphs.
Flight Itinerary Problem ICS 311 Fall 2006 Matt Freeburg.
Introduction to Graph Theory
ساختمانهای گسسته دانشگاه صنعتی شاهرود – فروردین 1392.
1) Find and label the degree of each vertex in the graph.
Tree Diagrams A tree is a connected graph in which every edge is a bridge. There can NEVER be a circuit in a tree diagram!
Graphs Definition: a graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected.
N u 1 u 2 u Canonical Decomposition. V 8 V 7 V 6 V 5 V 4 V 3 V 2 V 1 n u 1 u 2 u.
Spanning Trees Dijkstra (Unit 10) SOL: DM.2 Classwork worksheet Homework (day 70) Worksheet Quiz next block.
CSC 213 – Large Scale Programming Lecture 31: Graph Traversals.
MCA 520: Graph Theory Instructor Neelima Gupta
Representing Graphs Depth First Search Breadth First Search Graph Searching Algorithms.
An introduction to chordal graphs and clique trees
Roman Domination on Strongly Chordal Graph
Algorithms and Networks
Minimum Spanning Trees
Minimum Spanning Tree Chapter 13.6.
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Graph Theory and Algorithm 01
Topological Sort (topological order)
(2,4) Trees 11/15/2018 9:25 AM Sorting Lower Bound Sorting Lower Bound.
Short paths and spanning trees
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
ICS 353: Design and Analysis of Algorithms
Minimum Spanning Trees
EMIS 8373: Integer Programming
Connected Components Minimum Spanning Tree
Chapter 7: Greedy Algorithms
SLOPE = = = The SLOPE of a line is There are four types of slopes
Graphs, Trees and Algorithms 1
(2,4) Trees 12/4/2018 1:20 PM Sorting Lower Bound Sorting Lower Bound.
Lecture 22 CSE 331 Oct 23, 2017.
Lecture 24 CSE 331 Oct 29, 2012.
Md. Abul Kashem, Chowdhury Sharif Hasan, and Anupam Bhattacharjee
CS 290H Lecture 3 Fill: bounds and heuristics
Is it a Function? Teacher Twins©2014.
(2,4) Trees 2/28/2019 3:21 AM Sorting Lower Bound Sorting Lower Bound.
Graph Abstraction Through Centrality Erosion and k-Clique Minimization
Graphs G = (V, E) V are the vertices; E are the edges.
Breadth-First Search L0 L1 L2 C B A E D F 4/25/2019 3:12 AM
Simple Graphs: Connectedness, Trees
Is it a Function? Teacher Twins©2014.
The Greedy Approach Young CS 530 Adv. Algo. Greedy.
Warm Up – Tuesday Find the critical times for each vertex.
Biconnectivity SEA PVD ORD FCO SNA MIA 5/23/ :21 PM
Breadth-First Search L0 L1 L2 C B A E D F 5/14/ :22 AM
Breadth-First Search L0 L1 L2 C B A E D F 7/28/2019 1:03 PM
Lecture 23 NP-Hard Problems
Presentation transcript:

tree -decomposition *5499016 竹内 和樹 *5499023 藤井 勲

contents 1,Introduction 2,Main Algorithm 3,yfiles 4,Construction of Tree-Decomposition 5,Analysis of Algorithm 6,From now on Target

Introduction ~Purpose~ INPUT : G = (V,E) Output : Tree-decomposition ( T , X ) 1 2 6 1,2,3 2,3,4 4,6,8 7 8 3 4 4,5 2,4,7 4,6,7 5

Introduction ( T , X ) : T = ( I , F ) , X = { Xi : i ∈ I } (1), ∪ Xi = V i∈I (2), for every edge {v,w} ∈E, there is an i ∈ I with v ∈Xi and w ∈ Xi, (3), for all i,j,k ∈ I if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj

Introduction (1), ∪ Xi = V i∈I 1 2 6 1,2,3 2,3,4 4,6,8 7 8 3 4 4,5 2,4,7 4,6,7 5

Introduction ( T , X ) : T = ( I , F ) , X = { Xi : i ∈ I } (1), ∪ Xi = V i∈I (2), for every edge {v,w} ∈E, there is an i ∈ I with v ∈Xi and w ∈ Xi, (3), for all i,j,k ∈ I if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj

Introduction (2), for every edge {v,w} ∈E, there is an i ∈ I with v ∈Xi and w ∈ Xi, 1 2 6 1,2,3 2,3,4 4,6,8 7 8 3 4 4,5 2,4,7 4,6,7 5

Introduction (2), for every edge {v,w} ∈E, there is an i ∈ I with v ∈Xi and w ∈ Xi, 1 2 6 1,2,3 2,3,4 4,6,8 7 8 3 4 4,5 2,4,7 4,6,7 5

Introduction (2), for every edge {v,w} ∈E, there is an i ∈ I with v ∈Xi and w ∈ Xi, 1 2 6 1,2,3 2,3,4 4,6,8 7 8 3 4 4,5 2,4,7 4,6,7 5

Introduction ( T , X ) : T = ( I , F ) , X = { Xi : i ∈ I } (1), ∪ Xi = V i∈I (2), for every edge {v,w} ∈E, there is an i ∈ I with v ∈Xi and w ∈ Xi, (3), for all i,j,k ∈ I if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj

Introduction (3), for all i,j,k ∈ I if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj 1 2 6 1,2,3 2,3,4 4,6,8 7 8 3 4 4,5 2,4,7 4,6,7 5

Introduction (3), for all i,j,k ∈ I if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj 1 2 6 1,2,3 2,3,4 4,6,8 7 8 3 4 4,5 2,4,7 4,6,7 5

Introduction (3), for all i,j,k ∈ I if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj 1 2 6 1,2,3 2,3,4 4,6,8 7 8 3 4 4,5 2, 4,7 4,6,7 5

Main Algorithm ~ An st-separating set ~ a set S ⊆ V {s,t} with the property that any path from s to t 1 2

Main Algorithm ~ Minimum st-separating set ~ The minimum number of vertices in an st-separating set

Calculate minimal separating Main Algorithm ~Outline~ Input Graph G = ( V , E ) Construct( T , X ) With | I | = 1 and X = V 1 no ∃i∈ I with Gi not a clique Output :current Tree-decomposition yes Calculate minimal separating Vertex set S for Gi: m components Yi1,.....,Yim Define Xi0 : = S Xij : Yij ∪ S, for j = 1,....,m Construct new ( T , X )

Main Algorithm 1 2 6 7 8 3 4 5 Input graph G = (V,I)

Main Algorithm 1 2 6 7 8 3 4 5 Calculate minimal separataing vertex set S for Gi 7 8 3 4 5

Main Algorithm 1 2 6 7 8 3 4 5 Calculate minimal separataing vertex set S for Gi 7 8 3 4 5

Main Algorithm 1 2 6 7 8 3 4 5 Calculate minimal separating vertex set S for Gi . 7 8 3 4 5 Separate Y and Y S =(4) 11 12 11

Main Algorithm 1 2 6 7 8 3 4 5 Calculate minimal separating vertex set S for Gi . 7 8 3 4 5 Separate Y and Y S =(4) 11 12 11

Main Algorithm 1 2 6 7 8 3 4 Calculate minimal separating vertex set S for X . 7 11 8 3 4

Main Algorithm 1 2 6 7 8 3 4 Calculate minimal separating vertex set S for X . 7 11 8 3 4

Main Algorithm 1 2 6 7 8 3 4 Calculate minimal separating vertex set S for X . 7 11 8 3 4 Separate Y and Y S =(2,4) 21 22 21

Main Algorithm 1 2 6 7 8 3 4 Calculate minimal separating vertex set S for X . 7 11 8 3 4 Separate Y and Y S =(2,4) 21 22 21

Main Algorithm 2 6 7 8 4 Calculate minimal separating vertex set S for X . 7 21 8 4

Main Algorithm 2 6 7 8 4 Calculate minimal separating vertex set S for X . 7 21 8 4

Main Algorithm 2 6 7 8 4 Calculate minimal separating vertex set S for X . 7 21 8 4 Separate Y and Y S =(4,6) 31 32 31

Main Algorithm 2 6 7 8 4 Calculate minimal separating vertex set S for X . 7 21 8 4 Separate Y and Y S =(4,6) 31 32 31

Main Algorithm 2 6 7 4 Calculate minimal separating vertex set S for X . 7 31 4

Main Algorithm 2 6 7 4 Calculate minimal separating vertex set S for X . 7 31 4

Main Algorithm 2 6 7 4 Calculate minimal separating vertex set S for X . 7 31 4 Separate Y and Y S =(4,6) 41 42 41

Main Algorithm 2 6 7 4 Calculate minimal separating vertex set S for X . 7 31 4 Separate Y and Y S =(4,6) 41 42 41

Main Algorithm 6 7 4 Calculate minimal separating vertex set S for X . 41 4

Main Algorithm 6 7 4 Calculate minimal separating vertex set S for X . 41 4 ・ ・ ・

Main Algorithm 6 7 4 Calculate minimal separating vertex set S for X . 41 4 ・ ・ ・ X is clique . 41 r = X = {4,6,7} 1 41

Main Algorithm 2 7 4 Calculate minimal separating vertex set S for X . 42 4

Main Algorithm 2 7 4 Calculate minimal separating vertex set S for Y . 42 4 ・ ・ ・

Main Algorithm 2 7 4 Calculate minimal separating vertex set S for Y . 42 4 ・ ・ ・ X is clique . 42 r = X = {2,4,7} 2 42

Main Algorithm 6 8 4 Calculate minimal separating vertex set S for X . 32 8 4 ・ ・ ・ X is clique . 32 r = X = {4,6,8} 3 32

Main Algorithm 1 2 3 4 Calculate minimal separating vertex set S for X . 22 3 4

Main Algorithm 1 2 3 4 Calculate minimal separating vertex set S for X . 22 3 4

Main Algorithm 1 2 3 4 Calculate minimal separating vertex set S for X . 22 3 4 Separate Y and Y S =(2,3) 33 34 32

Main Algorithm 1 2 3 4 Calculate minimal separating vertex set S for X . 22 3 4 Separate Y and Y S =(2,3) 33 34 32

Main Algorithm 2 3 4 Calculate minimal separating vertex set S for X . 33 3 4 ・ ・ ・ X is clique . 33 r = X = {2,3,4} 4 33

Main Algorithm 1 2 3 Calculate minimal separating vertex set S for X . 34 3 ・ ・ ・ X is clique . 34 r = X = {1,2,3} 5 34

Main Algorithm 4 5 Calculate minimal separating vertex set S for X . ・ 12 4 ・ ・ ・ 5 X is clique . 12 r = X = {1,2,3} 6 12

Main Algorithm All vertex sets are clique . Connect r ,…, r . 1 6

Main Algorithm All vertex sets are clique . S = (2,3) S = (2,4) 32 21 Connect r ,…, r . 1 6 1,2,3 2,3,4 4,6,8 S = (4,6) 31 4,5 2,4,7 4,6,7 S = (4) S = (4,7) 1 41

Analysis of algorithm

From now on Target ・自分達の algorithm の検討 ・yfiles を用いての tree-decomposition の      ダイナミックな実装 ・Heuristic の検討 ??動的な同型性判定??

Ex) Given a graph G =(V,E), construct tree- decomposition (T,X). 1,2,4 7,8 1 2 4 7 3 1,3,4 4,6,7 5 6 8 3,4,5 4,5,6