Volume 97, Issue 8, Pages (October 2009)

Slides:



Advertisements
Similar presentations
Order Parameters of a Transmembrane Helix in a Fluid Bilayer: Case Study of a WALP Peptide Andrea Holt, Léa Rougier, Valérie Réat, Franck Jolibois, Olivier.
Advertisements

Tryptophan-Lipid Interactions in Membrane Protein Folding Probed by Ultraviolet Resonance Raman and Fluorescence Spectroscopy Katheryn M. Sanchez, Guipeun.
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Intramembrane Water Associated with TOAC Spin-Labeled Alamethicin: Electron Spin- Echo Envelope Modulation by D2O  R. Bartucci, R. Guzzi, L. Sportelli,
Volume 86, Issue 4, Pages (April 2004)
Volume 96, Issue 10, Pages (May 2009)
Volume 107, Issue 10, Pages (November 2014)
Structure and Dynamics of the Membrane-Bound Form of Pf1 Coat Protein: Implications of Structural Rearrangement for Virus Assembly  Sang Ho Park, Francesca.
Christina E.B. Caesar, Elin K. Esbjörner, Per Lincoln, Bengt Nordén 
Volume 103, Issue 9, Pages (November 2012)
Mechanism of the Lamellar/Inverse Hexagonal Phase Transition Examined by High Resolution X-Ray Diffraction  Michael Rappolt, Andrea Hickel, Frank Bringezu,
Volume 102, Issue 7, Pages (April 2012)
Membrane Permeability of Hydrocarbon-Cross-Linked Peptides
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Volume 103, Issue 3, Pages (August 2012)
Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Uniformity, Ideality, and Hydrogen Bonds in Transmembrane α-Helices
Volume 96, Issue 1, Pages (January 2009)
Volume 112, Issue 4, Pages (February 2017)
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Volume 102, Issue 3, Pages (February 2012)
Richard C. Page, Sanguk Kim, Timothy A. Cross  Structure 
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
Simulation Studies of Protein-Induced Bilayer Deformations, and Lipid-Induced Protein Tilting, on a Mesoscopic Model for Lipid Bilayers with Embedded.
Lipid Interactions and Organization in Complex Bilayer Membranes
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Andrew E. Blanchard, Mark J. Arcario, Klaus Schulten, Emad Tajkhorshid 
Site-Specific Dichroism Analysis Utilizing Transmission FTIR
Dynamic Motions of the HIV-1 Frameshift Site RNA
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
Richard C. Page, Sanguk Kim, Timothy A. Cross  Structure 
Fluorescence Lifetime Spectroscopy in Multiply Scattering Media with Dyes Exhibiting Multiexponential Decay Kinetics  Eddy Kuwana, Eva M. Sevick-Muraca 
Volume 103, Issue 8, Pages (October 2012)
Anna M. Popova, Peter Z. Qin  Biophysical Journal 
Volume 96, Issue 2, Pages (January 2009)
Michael C. Puljung, William N. Zagotta  Biophysical Journal 
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Desmosterol May Replace Cholesterol in Lipid Membranes
Site-Directed Spin-Labeling Study of the Light-Harvesting Complex CP29
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Spontaneous Formation of Two-Dimensional and Three-Dimensional Cholesterol Crystals in Single Hydrated Lipid Bilayers  Roy Ziblat, Iael Fargion, Leslie.
Biophysical Characterization of Styryl Dye-Membrane Interactions
Volume 112, Issue 12, Pages (June 2017)
The Structural Basis of Cholesterol Accessibility in Membranes
Volume 83, Issue 3, Pages (September 2002)
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
Volume 108, Issue 4, Pages (February 2015)
Martin Kurylowicz, Ching-Hsing Yu, Régis Pomès  Biophysical Journal 
On the Role of Acylation of Transmembrane Proteins
The Role of Cholesterol in Driving IAPP-Membrane Interactions
Robust Driving Forces for Transmembrane Helix Packing
Areas of Monounsaturated Diacylphosphatidylcholines
Volume 80, Issue 5, Pages (May 2001)
Phospholipase D Activity Is Regulated by Product Segregation and the Structure Formation of Phosphatidic Acid within Model Membranes  Kerstin Wagner,
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Membrane Insertion of a Voltage Sensor Helix
Volume 105, Issue 11, Pages (December 2013)
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Volume 97, Issue 5, Pages (September 2009)
Volume 105, Issue 9, Pages (November 2013)
Deuterium NMR Study of the Effect of Ergosterol on POPE Membranes
Volume 98, Issue 4, Pages (February 2010)
Emmanuel O. Awosanya, Alexander A. Nevzorov  Biophysical Journal 
Presentation transcript:

Volume 97, Issue 8, Pages 2258-2266 (October 2009) Tilt and Rotation Angles of a Transmembrane Model Peptide as Studied by Fluorescence Spectroscopy  Andrea Holt, Rob B.M. Koehorst, Tania Rutters-Meijneke, Michael H. Gelb, Dirk T.S. Rijkers, Marcus A. Hemminga, J. Antoinette Killian  Biophysical Journal  Volume 97, Issue 8, Pages 2258-2266 (October 2009) DOI: 10.1016/j.bpj.2009.07.042 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 Emission spectra for a series of BADAN-labeled WALP23 peptides incorporated into 18:1PC using a peptide/lipid ratio of 1:500. The final concentration of peptide was ∼1 μM. All samples were measured at room temperature. Biophysical Journal 2009 97, 2258-2266DOI: (10.1016/j.bpj.2009.07.042) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 Spectral decomposition for emission spectra (dots) for a BADAN label in position L14C (A) and at the N-terminus (B). For both fits (thick gray line), the peak positions of the spectral components were allowed to vary for the HICTm state (between 18,000 and 22,000 cm−1) and were fixed for the HICTi and ICT states at 22,140 cm−1 and 23,400 cm−1, respectively (thin lines). Biophysical Journal 2009 97, 2258-2266DOI: (10.1016/j.bpj.2009.07.042) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 Fits to the peak positions of the HICTm state of BADAN-labeled WALP23 peptides in 18:1PC depending on the helical position of the label (A) and on the distance of the label to the center of the membrane (B). The best solution (τ = 23.6°, ρ = 107°) is indicated with a black line in A, and with black symbols in B (×: position of Trp; +: other positions). For comparison, the result with an imposed tilt angle τ = 0° is depicted in A with a gray line, and in B with gray symbols (open diamond, position of Trp; open triangle, other positions). Biophysical Journal 2009 97, 2258-2266DOI: (10.1016/j.bpj.2009.07.042) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 Contour plot of the SSD resulting from fits to the peak position of the HICTm state of BADAN-labeled WALP23 peptides in 18:1PC. The global minimum is marked by the plus sign and denotes the best solution. The isolines represent linearly spaced intervals based on the SSD of the best solution and the SSD of the solution with an imposed tilt angle τ = 0°, i.e., the helix oriented parallel to the membrane normal. The combinations of tilt and rotation angles not enclosed by the isolines give SSDs larger than the SSD obtained for τ = 0°. Biophysical Journal 2009 97, 2258-2266DOI: (10.1016/j.bpj.2009.07.042) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 Wavenumber peak position Pm of the mobile hydrogen-bonded fraction of labels obtained from spectral decomposition of emission spectra of BADAN-labeled WALP23 peptides incorporated into bilayers of unsaturated phospholipids with different thicknesses (A) and bilayers of 18:1PC containing different cholesterol concentrations (B). The lines are drawn to guide the eyes, since only some positions in the WALP23 peptide were labeled with BADAN. Biophysical Journal 2009 97, 2258-2266DOI: (10.1016/j.bpj.2009.07.042) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 6 Structures of BADAN and 1,5-IAEDANS coupled to a cysteine. Biophysical Journal 2009 97, 2258-2266DOI: (10.1016/j.bpj.2009.07.042) Copyright © 2009 Biophysical Society Terms and Conditions