VDD Vin+ CL Vin- Vb3 folded cascode amp Vb2 Vb1 Vb4 Vb5.

Slides:



Advertisements
Similar presentations
MULTISTAGE AMPLIFIERS
Advertisements

Differential Amplifiers
DIFFERENTIAL AMPLIFIERS. DIFFERENTIAL AMPLIFIER 1.VERY HIGH INPUT IMPEDENCE 2.VERY HIGH BANDWIDTH 3.DIFFERENTIAL INPUT 4.DC DIFFERENTIAL INPUT ACCEPTED.
Lecture 20: Frequency Response: Miller Effect
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 24 Lecture 24: Examples of Multistage Amps Prof. Niknejad.
Operational Amplifier (2)
IDEAL OPERATIONAL AMPLIFIER AND OP-AMP CIRCUITS
1 EE 501 Fall 2009 Design Project 1 Fully differential multi-stage CMOS Op Amp with Common Mode Feedback and Compensation for high GB.
ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 16. Active Loads Jose E. Schutt-Aine Electrical & Computer Engineering University of.
COMMON-COLLECTOR AMPLIFIER
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
LECTURE 1: BASIC BJT AMPLIFIER -AC ANALYSIS-
TECHNIQUES OF DC CIRCUIT ANALYSIS: SKEE 1023
ANALOGUE ELECTRONICS CIRCUITS I
FET Amplifier Circuits Analysis
ANALOGUE ELECTRONICS I
Recall Lecture 17 MOSFET DC Analysis
COMMON-GATE AMPLIFIER
Recall Last Lecture Introduction to BJT Amplifier
Recall Lecture 14 Introduction to BJT Amplifier
Recall Lecture 17 MOSFET DC Analysis
Lecture 13 High-Gain Differential Amplifier Design
EMT 112 / 4 ANALOGUE ELECTRONICS
ANALOGUE ELECTRONICS I
Recall Lecture 17 MOSFET DC Analysis
Voltage doubler for gate overdrive
TECHNIQUES OF DC CIRCUIT ANALYSIS: SKEE 1023
VDD M3 M1 Vbb Vin CL Rb Vo VDD Vo Vb3
CASCODE AMPLIFIER.
Fully differential op amps
vs vb cc VDD M9 M12 M11 Iref M1 M2 vo vin- vin+= voQ = vo CL M3 M4 M13
Last time Small signal DC analysis Goal: Mainly use CS as example
Last time Large signal DC analysis Current mirror example
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin
MULTISTAGE AMPLIFIERS
OpAmp (OTA) Design The design process involves two distinct activities: Architecture Design Find an architecture already available and adapt it to present.
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
cc cc vbp vbp vbn VDD VDD VDD VDD VDD M16 M4 M3 M4 M13 Rbp vo+ CL vo-
Recall Last Lecture Introduction to BJT Amplifier
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
VDD VDD Vo<VG6+|Vt6| =VDD - |Vtp| - 2Veff M7 M5 M8 M6 vo
For a differential amplifer: vin+=vic+vid/2, vin-=vic-vid/2
Lecture 13 High-Gain Differential Amplifier Design
vs vin- vin+ vbp vbn vbn vbb vbb VDD VDD M9 M12 M1 M2 v- v+ Iref M3 M4
Last time Reviewed 4 devices in CMOS Transistors: main device
Miller equivalent circuit
Recall Last Lecture Introduction to BJT Amplifier
Common mode feedback for fully differential amplifiers
Recall Last Lecture Introduction to BJT Amplifier
Basic current mirror Small signal: Rin = 1/(gm1+gds1)  1/gm1
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
Recall Lecture 17 MOSFET DC Analysis
Single-Stage Amplifiers
Operational Amplifier (Op-Amp)-μA741
Types of Amplifiers Common source, input pairs, are transconductance
Input common mode range
VDD M2 M1 Vbb Vin CL RL Vo VDD Vo Vb2
Common mode feedback for fully differential amplifiers
Common source output stage:
Differential Amplifier
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin
Complementary input stage with rail-to-rail Vicmr and constant gm
Folded cascode stage: summing current and convert to voltage
Differential Amplifier
A general method for TF It’s systematic Uses Mason’s formula
Common-Collector (Emitter-Follower) Amplifier
Common-Collector (Emitter-Follower) Amplifier
Common-Collector (Emitter-Follower) Amplifier
Recall Last Lecture Introduction to BJT Amplifier
Analysis of Single Stage Amplifiers
Presentation transcript:

VDD Vin+ CL Vin- Vb3 folded cascode amp Vb2 Vb1 Vb4 Vb5

Output swing range and input common mode range are now decoupled. OSR: VDD-4Veff ICMR: 2Veff+Vt1 to VDD-Veff +Vt1 VDD-3Veff But, if Vic cannot exceed VDD, ICMR: 2Veff+Vt1 to VDD VDD-2Veff-Vt1

D1 connects to G2, two stages VDD VDD VDD VDD two stage CS amplifier CS amplifier with a source follower buffer

VDD VDD VDD Vx Vx Same as above, only T2 is pMOS Connecting S1 to D2 makes ro really small buffer or output stage

VDD Vbp Vbn vin vo

Miller equivalent circuit I2 =Y(V2-V1) =Y(V2+V2/A) =(1+1/A)YV2  Y2=(1+1/A)Y Y Chapter 4 Figure 15 I1=I=Y(V1-V2) =Y(V1+AV2) =(1+A)YV1 Y1=(1+A)Y

The above is proven by assuming constant A. But in reality, A depends on Y and connection. Correct use of Miller is quite tricky!

v2 = -Av1 v2 Agm1R2 This is for DC.

But this is missing the positive zero: z1 = +gm1/Cgd1 v1/vin=1/(1+sRs(Cgs1+(1+gm1R2 )Cgd1)) vo/v1= -gm1/(G2 + s(C2 +Cgd1)) Multiply: vo/vin= -gm1/{(G2 + s(C2 +Cgd1))(1+sRs(Cgs1+(1+gm1R2 )Cgd1))} But this is missing the positive zero: z1 = +gm1/Cgd1  Cgd1 A better approach: first set Rs=0, find TF from gate to vo, as we did before; then use Miller effect, find TF from vin to v1 (left circuit); then multiply together to get TF from vin to vo.  vo/vin = (sCgd1 -gm1)/{(G2 + s(C2 +Cgd1))(1+sRs(Cgs1+(1+gm1R2 )Cgd1))}

g'm=gm1+gs11.2gm1 KCL at vo: -g’mvs+(vo-vs)gds+vo(GL+sC2)=0 vo/vs=(g’m+gds)/(gds+GL+sC2) ’

Zero value time constant: If a TF=n(s)/d(s) has only real poles d(s)=(1+t1s)(1+t2s)(1+t3s)… =1+(t1+t2+t3+…)s + (t1t2+t2t3+…)s2+… For low frequency, s small, we have d(s)  1+(t1+t2+t3+…)s Hence the lowest freq pole is approximately p1  -1/(t1+t2+t3+…) This only good for low freq, and real poles.

Application: Perform series/parallel simplification For each remaining capacitor, find resistance it sees by: Short V-source, open I-source, open other caps teff = R1C1+R2C2+…

C2 is CL||Cdb1||Cdb2 R2 is rds1||rds2 Cgs1 sees Rs, C2 sees R2 For Cgd1, more complex.

Resistance seen by Cgd1 can be found by applying a test v3 across Cgd1, finding the resulting current i3, and using R3=v3/i3 R3 = R2 + (1+gm1R2)*Rs teff=RsCgs1+R2C2+R2Cgd1+ (1+gm1R2)*RsCgd1

4.2.6 If vin is v-source, Small signal model Should be: ~

VDD VDD M7 M5 Vyy Vxx M8 M6 vo- vo+ CL M3 M4 Vbb CL M1 M2 vin+ vin- Vs

VDD VDD VDD Rb M2 Vbb CL M1 Vin Vo Vo Both have the same small signal model