Biochemical cartilage alteration and unexpected signal recovery in T2

Slides:



Advertisements
Similar presentations
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis.
Advertisements

Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young.
Subregional laminar cartilage MR spin–spin relaxation times (T2) in osteoarthritic knees with and without medial femorotibial cartilage loss – data from.
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
T1ρ relaxation time of the meniscus and its relationship with T1ρ of adjacent cartilage in knees with acute ACL injuries at 3T  R.I. Bolbos, Ph.D., T.M.
Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images – data from the Osteoarthritis Initiative 
Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running  T.J. Mosher, Y. Liu, C.M. Torok 
Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study  F.W. Roemer, T. Neogi,
Imaging following acute knee trauma
Loss of anterior cruciate ligament integrity and the development of radiographic knee osteoarthritis: a sub-study of the osteoarthritis initiative  V.L.
Changes in the T2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle.
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Two year longitudinal change and test–retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative  F. Eckstein, M.D.,
Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures  T. Baum, G.B. Joseph, D.C.
T1ρ and T2 relaxation times predict progression of knee osteoarthritis
Uwe G. Kersting, Ph. D. , Johann J. Stubendorff, M. D. , Matthias C
Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral.
Association of knee and ankle osteoarthritis with physical performance
C. D. Jordan, E. J. McWalter, U. D. Monu, R. D. Watkins, W. Chen, N. K
Evaluation of cartilage matrix disorders by T2 relaxation time in patients with hip dysplasia  T. Nishii, M.D., H. Tanaka, M.D., N. Sugano, M.D., T. Sakai,
Imaging of non-osteochondral tissues in osteoarthritis
Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee  S.T. Soellner, A. Goldmann, D. Muelheims,
Isotropic three-dimensional T2 mapping of knee cartilage with T2-prepared segmented gradient ECHO at 3T  R. Colotti, P. Omoumi, R.B. van Heeswijk  Osteoarthritis.
Cyst-like lesions of the knee joint and their relation to incident knee pain and development of radiographic osteoarthritis: the MOST study  A. Guermazi,
A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging – data from the Osteoarthritis Initiative  C. Stehling, T. Baum,
The effect of anterior cruciate ligament injury on bone curvature: exploratory analysis in the KANON trial  D.J. Hunter, L.S. Lohmander, J. Makovey, J.
Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions  E. Schneider, M.
Bone marrow lesions, subchondral bone cysts and subchondral bone attrition are associated with histological synovitis in patients with end-stage knee.
The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee  C.G. Peterfy, M.D., Ph.D., E.
M. C. Gallo, C. Wyatt, V. Pedoia, D. Kumar, S. Lee, L. Nardo, T. M
Morphological changes of the lateral meniscus in end-stage lateral compartment osteoarthritis of the knee  S.H. Hwang, K.A. Jung, W.J. Lee, K.H. Yang,
Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density  K. Akiyama,
Osteoarthritis year 2011 in review: biochemical markers of osteoarthritis: an overview of research and initiatives  Y. Henrotin  Osteoarthritis and Cartilage 
Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions  L. Wan, B.S., R.J. de Asla, M.D.,
Cluster analysis of quantitative MRI T2 and T1ρ relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T 
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system  S.A. Millington, B.M.B.S., M.R.C.S.
Incidence of symptomatic osteochondritis dissecans lesions of the knee: a population- based study in Olmsted County  A. Pareek, T.L. Sanders, I.T. Wu,
Between-group differences in infra-patellar fat pad size and signal in symptomatic and radiographic progression of knee osteoarthritis vs non-progressive.
Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading  E.B. Dam, Ph.D., J. Folkesson, M.Sc.,
Effects of in vivo exercise on ankle cartilage deformation and recovery in healthy volunteers: an experimental study  A. Van Ginckel, P. Roosen, K.F.
D. J. Hunter, D. P. Beavers, F. Eckstein, A. Guermazi, R. F. Loeser, B
T. Nozaki, Y. Kaneko, H. Yu, K. Kaneshiro, R. Schwarzkopf, T. Hara, H
J. Ranstam  Osteoarthritis and Cartilage 
Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial  M. Henriksen, D.J.
A relationship between mechanically-induced changes in serum cartilage oligomeric matrix protein (COMP) and changes in cartilage thickness after 5 years 
Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis 
M. Wang, A. Radjenovic, T. W. Stapleton, R. Venkatesh, S. Williams, E
D. Hayashi, F.W. Roemer, A. Guermazi  Osteoarthritis and Cartilage 
Development of quantitative in vivo imaging of articular cartilage degradation in murine osteoarthritis  P. Das Neves Borges, M.M. Fowkes, P.E. Brennan,
Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study  D.
Comments on Beattie et al
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
Who should have a joint replacement? A plea for more ‘phronesis’
Magnetic resonance imaging (MRI)-defined cartilage degeneration and joint pain are associated with poor physical function in knee osteoarthritis – the.
Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young.
Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection  M.-A.
A novel method for assessing signal intensity within infrapatellar fat pad on MR images in patients with knee osteoarthritis  M. Lu, Z. Chen, W. Han,
MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up 
X. Li, Ph. D. , C. Benjamin Ma, M. D. , T. M. Link, M. D. , D. -D
A 2-year follow-up of a study to compare the efficacy of lateral wedged insoles with subtalar strapping and in-shoe lateral wedged insoles in patients.
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
D.J. Hunter  Osteoarthritis and Cartilage 
Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary.
R. M. Queen, J. E. Carter, S. B. Adams, M. E. Easley, J. K. DeOrio, J
Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage  J. Schooler, D. Kumar, L. Nardo, C. McCulloch,
Osteoarthritis year 2012 in review: biology
Systematic review of the impact of osteoarthritis on health outcomes for comorbid disease in older people  L. Parkinson, D.L. Waters, L. Franck  Osteoarthritis.
Osteoarthritis year in review 2016: mechanics
General Information Osteoarthritis and Cartilage
Presentation transcript:

Biochemical cartilage alteration and unexpected signal recovery in T2 Biochemical cartilage alteration and unexpected signal recovery in T2* mapping observed in ankle joints with mobile MRI during a transcontinental multistage footrace over 4486 km  U.H.W. Schütz, J. Ellermann, D. Schoss, H. Wiedelbach, M. Beer, C. Billich  Osteoarthritis and Cartilage  Volume 22, Issue 11, Pages 1840-1850 (November 2014) DOI: 10.1016/j.joca.2014.08.001 Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 MR-image post-processing for quantification of thickness and T2* relaxation time of TTJ cartilage: A: sagittal FLASH T2*w GRE: (1) tibia, (2) talus, (3) calcaneus, (4) navicular, (5) cuboid, (6) ankle joint, (7) subtalar joint, (8) talonavicular joint, (9) calcaneocuboidal joint. B: fused colored T2* GRE map (syngo™ MapIt fusion technique): colored visualization of T2* in tibial plafond and talar dome cartilage of the ankle joint. C: cartilage thickness [mm] measurement of ankle joint (anterior, central and posterior in each slice). Osteoarthritis and Cartilage 2014 22, 1840-1850DOI: (10.1016/j.joca.2014.08.001) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 T2*-mapping of TTJ (relaxation time): Absolute values of measures of variation (nF = 13). Osteoarthritis and Cartilage 2014 22, 1840-1850DOI: (10.1016/j.joca.2014.08.001) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 T2*-mapping of TTJ: Relative changes of T2* relaxation times of single and aggregated segments compared to start (finisher group; nF = 13). Osteoarthritis and Cartilage 2014 22, 1840-1850DOI: (10.1016/j.joca.2014.08.001) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Osteochondral lesions (yellow arrow) in the ankle joint. Sagittal TIRM slices through TTJ: A: of a 59-years-old male finisher (1: baseline, 2: stage 32/2176 km run, 3: stage 53/3669 km run, 4: 8 months after TEFR) B: of a 49-years-old male non-finisher (1: baseline, 2: stage 19/1260 km run, 3:stage 31/2131 km run, 4: stage 53/3669 km run) C: of a 46-years-old male finisher (1: baseline, 2: stage 52/3609 km run) and a 68-years-old female non-finisher (3: baseline, 4: stage 15/1003 km run) D: of a 34-years-old male finisher (1: baseline, 2: stage 18/1192 km run, 3:stage 29/1985 km run, 4: stage 54/3763 km run). Osteoarthritis and Cartilage 2014 22, 1840-1850DOI: (10.1016/j.joca.2014.08.001) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions