Lecture 7 OUTLINE Work Function Metal-Semiconductor Contacts

Slides:



Advertisements
Similar presentations
Metal-semiconductor (MS) junctions
Advertisements

Spring 2007EE130 Lecture 13, Slide 1 Lecture #13 ANNOUNCEMENTS Quiz #2 next Friday (2/23) will cover the following: – carrier action (drift, diffusion,
Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.
Lecture #12 OUTLINE Metal-semiconductor contacts (cont.)
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Integrated Circuit Devices Professor Ali Javey Summer 2009 MS Junctions Reading: Chapter14.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
Lecture 9 OUTLINE pn Junction Diodes – Electrostatics (step junction) Reading: Pierret 5; Hu
Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
Introduction to semiconductor technology. Outline –6 Junctions Metal-semiconductor junctions –6 Field effect transistors JFET and MOS transistors Ideal.
President UniversityErwin SitompulSDP 11/1 Lecture 11 Semiconductor Device Physics Dr.-Ing. Erwin Sitompul President University
EE130/230A Discussion 10 Peng Zheng.
ECE 875: Electronic Devices
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Lecture #14 OUTLINE Midterm #1 stats The pn Junction Diode
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Chapter 14. MS Contacts and Practical Contact Considerations
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Chapter 5. pn Junction Electrostatics
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
A p-n junction is not a device
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Junction Field Effect Transistor (JFET)
Lecture #12 OUTLINE Metal-semiconductor contacts (cont.)
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Lecture 7 OUTLINE Poisson’s equation Work function
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 19 OUTLINE The MOSFET: Structure and operation
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
Lecture 7 OUTLINE Poisson’s equation Work function
Lecture 28 OUTLINE The BJT (cont’d) Small-signal model
EE130/230A Discussion 5 Peng Zheng.
Chapter 4.1 Metal-semiconductor (MS) junctions
Deviations from the Ideal I-V Behavior
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
pn Junction Electrostatics
Sung June Kim Chapter 16. MOS FUNDAMENTALS Sung June Kim
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
pn Junction Electrostatics
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 12 OUTLINE pn Junction Diodes (cont’d)
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 20 OUTLINE The MOSFET (cont’d)
EE130/230A Discussion 4 Peng Zheng.
Lecture 12 OUTLINE pn Junction Diodes (cont’d)
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Chapter 3 Solid-State Diodes and Diode Circuits
Presentation transcript:

Lecture 7 OUTLINE Work Function Metal-Semiconductor Contacts Energy band diagrams Depletion-layer width Small-signal capacitance Reading: Pierret 14.1-14.2; Hu 4.16

Metal-Semiconductor Contacts There are 2 kinds of metal-semiconductor contacts: rectifying “Schottky diode” non-rectifying “ohmic contact” EE130/230A Fall 2013 Lecture 7, Slide 2

Work Function E0: vacuum energy level FM: metal work function R.F. Pierret, Semiconductor Fundamentals, Figure 14.1 FM: metal work function FS: semiconductor work function EE130/230A Fall 2013 Lecture 7, Slide 3

Ideal M-S Contact: FM < FS, n-type Band diagram instantly after contact formation: Equilibrium band diagram: EE130/230A Fall 2013 Lecture 7, Slide 4 R.F. Pierret, Semiconductor Fundamentals, Fig. 14.2

Ideal M-S Contact: FM > FS, n-type Band diagram instantly after contact formation: Equilibrium band diagram: qVbi = FBn– (Ec – EF)FB Schottky Barrier Height: n W EE130/230A Fall 2013 Lecture 7, Slide 5 R.F. Pierret, Semiconductor Fundamentals, Fig. 14.2

Effect of Interface States on FBn Ideal M-S contact: FBn = FM – c Real M-S contacts: A high density of allowed energy states in the band gap at the M-S interface “pins” EF to be within the range 0.4 eV to 0.9 eV below Ec FM FBn C. C. Hu, Modern Semiconductor Devices for ICs, Figure 4-35 EE130/230A Fall 2013 Lecture 7, Slide 6

Schottky Barrier Heights: Metal on Si FBn tends to increase with increasing metal work function EE130/230A Fall 2013 Lecture 7, Slide 7

Schottky Barrier Heights: Silicide on Si Silicide-Si interfaces are more stable than metal-silicon interfaces and hence are much more prevalent in ICs. After metal is deposited on Si, a thermal annealing step is applied to form a silicide-Si contact. The term metal-silicon contact includes silicide-Si contacts. EE130/230A Fall 2013 Lecture 7, Slide 8

The Depletion Approximation The semiconductor is depleted of mobile carriers to a depth W In the depleted region (0  x  W ): r = q (ND – NA) Beyond the depleted region (x > W ): r = 0 EE130/230A Fall 2013 Lecture 7, Slide 9 R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4

Electrostatics Poisson’s equation: The solution is: EE130/230A Fall 2013 Lecture 7, Slide 10 R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4

Depletion Width, W At x = 0, V = -Vbi W decreases with increasing ND EE130/230A Fall 2013 Lecture 7, Slide 11 R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4

Voltage Drop across the M-S Contact Under equilibrium conditions (VA = 0), the voltage drop across the semiconductor depletion region is the built-in voltage Vbi. If VA  0, the voltage drop across the semiconductor depletion region is Vbi - VA. EE130/230A Fall 2013 Lecture 7, Slide 12 R.F. Pierret, Semiconductor Fundamentals, Fig. 14.3

Depletion Width, W, for VA  0 Last time, we found that At x = 0, V = - (Vbi - VA) W increases with increasing –VA W decreases with increasing ND EE130/230A Fall 2013 Lecture 7, Slide 13 R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4

Charge Storage in a Schottky Diode Charge is “stored” on both sides of the M-S contact. The applied bias VA modulates this charge. R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4 EE130/230A Fall 2013 Lecture 7, Slide 14

Small-Signal Capacitance If an a.c. voltage va is applied in series with the d.c. bias VA, the charge stored in the Schottky contact will be modulated at the frequency of the a.c. voltage displacement current will flow: EE130/230A Fall 2013 Lecture 7, Slide 15

Using C-V Data to Determine FB Once Vbi and ND are known, FBn can be determined: EE130/230A Fall 2013 Lecture 7, Slide 16

Ideal M-S Contact: FM > FS, p-type semiconductor Band diagram instantly after contact formation: Equilibrium band diagram: EE130/230A Fall 2013 Lecture 7, Slide 17 R.F. Pierret, Semiconductor Fundamentals, p. 482

Ideal M-S Contact: FM < FS, p-type semiconductor Band diagram instantly after contact formation: Equilibrium band diagram: Schottky Barrier Height: FBp qVbi = FBp– (EF – Ev)FB W EE130/230A Fall 2013 Lecture 7, Slide 18 R.F. Pierret, Semiconductor Fundamentals, p. 482

W for p-type Semiconductor At x = 0, V = Vbi + VA W increases with increasing VA W decreases with increasing NA EE130/230A Fall 2013 Lecture 7, Slide 19

Summary For rectifying contacts: small-signal capacitance EF Ec Ev EF R.F. Pierret, Semiconductor Fundamentals, p. 481 For rectifying contacts: small-signal capacitance EE130/230A Fall 2013 Lecture 7, Slide 20

Summary: Rectifying Contacts Schottky barrier height, FB: Energy barrier that must be surmounted in order for a carrier in the metal to enter the semiconductor Built-in potential, qVbi: FBn-(EC-EF)FB for n-type Si, FBp-(EF-Ev)FB for p-type Si Ideally qVbi is equal to the work function difference between the metal and semiconductor. In practice, for Si: FBn  (2/3)EG and FBp  (1/3)EG EE130/230A Fall 2013 Lecture 7, Slide 21