Qimiao Si Rice University

Slides:



Advertisements
Similar presentations
Kondo Physics from a Quantum Information Perspective
Advertisements

Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Quantum Griffiths Phases of Correlated Electrons Collaborators: Eric Adrade (Campinas) Matthew Case (FSU) Eduardo Miranda (Campinas) REVIEW: Reports on.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Fermi-Liquid description of spin-charge separation & application to cuprates T.K. Ng (HKUST) Also: Ching Kit Chan & Wai Tak Tse (HKUST)
Extended Dynamical Mean Field. Metal-insulator transition el-el correlations not important:  band insulator: the lowest conduction band is fullthe lowest.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Diagrammatic Theory of Strongly Correlated Electron Systems.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective:Points for Discussion G. Kotliar Physics Department and Center for Materials Theory.
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Theory of the Quantum Mirage*
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Self-generated instability of a ferromagnetic quantum-critical point
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Electronic Griffiths phases and dissipative spin liquids
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Qimiao Si Rice University KIAS, Oct 29, 2005 Heavy fermion metals: Global phase diagram, local quantum criticality, and experiments.
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.
Quantum Criticality in Magnetic Single-Electron Transistors T p Physics of non-Fermi-liquid Metals Qimiao Si, Rice University, DMR Quantum criticality.
The quest to discover the self-organizing principles that govern collective behavior in matter is a new frontier, A New Frontier ELEMENTS BINARYTERTIARY.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Qimiao Si Rice University
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
Kondo Effect Ljubljana, Author: Lara Ulčakar
Quantum criticality: where are we and where are we going ?
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
“QCD Kondo effect” KH, K. Itakura, S. Ozaki, S. Yasui,
6/25/2018 Nematic Order on the Surface of three-dimensional Topological Insulator[1] Hennadii Yerzhakov1 Rex Lundgren2, Joseph Maciejko1,3 1 University.
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Quantum entanglement, Kondo effect, and electronic transport in
Interplay of disorder and interactions
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
How might a Fermi surface die?
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
UC Davis conference on electronic structure, June. 2009
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Boundary Conformal Field Theory & Nano-structures
Yukawa Institute for Theoretical Physics
Deformation of the Fermi surface in the
Presentation transcript:

Qimiao Si Rice University Kondo Lattices: What do we learn from microscopics? Qimiao Si Rice University Lijun Zhu, Stefan Kirchner, Tae-Ho Park, Eugene Pivovarov, (Rice University) Silvio Rabello, J. L. Smith Kevin Ingersent (Univ. of Florida) Daniel Grempel (CEA-Saclay) Jianxin Zhu (Los Alamos) KIAS, Oct 24, 2005

A: every spin (spontaneously) points up B temperature T C T=0 A control parameter  A: every spin (spontaneously) points up Order parameter: B: every microstate equally probable: m=0 C: every spin points along the transverse field: m=0

Quantum Phase Transition QCP Quantum Critical ordered state control parameter  temperature T T=0 A B C A: every spin (spontaneously) points up Order parameter: B: every microstate equally probable: m=0 C: every spin points along the transverse field: m=0

Heavy fermion metals near a magnetic QCP: YbRh2Si2 Linear resistivity TN TN J. Custers et al, Nature 2003

T=0 SDW Transition order parameter fluctuations in space and (imaginary) time

T=0 SDW Transition order parameter fluctuations in space and (imaginary) time fermions are integrated out

T=0 SDW Transition order parameter fluctuations in space and (imaginary) time fermions are integrated out

Quantum Critical Electron Systems temperature T Non-Fermi Liquid magnetic order T=0 QCP control parameter  Do non-Fermi liquid electronic excitations in turn change the nature of quantum criticality?

+ Kondo Lattice Model a lattice of s=1/2 local moments, one per site a conduction-electron band

Pre-History I: Kondo resonance (one local moment in a conduction electron bath) Kondo temperature: Singlet ground state: Kondo resonance: local moment acquires electron quantum number due to entanglement

Pre-History II: Heavy Fermi Liquid (Kondo Lattice) Slave fermions: w/ constraint: Slave boson:

Pre-History II: Heavy Fermi Liquid (Kondo Lattice) Mean field theory … k-independent pole in Σ

Pre-History II: Heavy Fermi Liquid (Kondo Lattice) Mean field theory … k-independent pole in Σ … heavy electron band Beyond mean field: gauge theory in its Higgs phase

Pre-History II: Heavy Fermi Liquid (Kondo Lattice) Mean field theory … k-independent pole in Σ … heavy electron band Beyond mean field: gauge theory in its Higgs phase Magnetic ordering: SDW out of the heavy quasiparticles

DMFT* of Kondo Lattice Mapping to a self-consistent Kondo model (* Georges and Kotliar, Metzner and Vollhardt, … ) Mapping to a self-consistent Kondo model + self-consistency conditions Correctly describes Kondo screening: heavy fermion phase But: no competing mechanism against Kondo effect: Kondo screening is too robust No dynamical competition between Kondo and RKKY

Extended-DMFT* of Kondo Lattice (* Smith & QS; Chitra & Kotliar; Sengupta & Georges ) Mapping to a Bose-Fermi Kondo model: + self-consistency conditions Electron self-energy Σ () G(k,ω)=1/[ω – εk - Σ(ω)] “spin self-energy” M () (q,ω)=1/[ Iq + M(ω)]

Extended-DMFT of Kondo Lattice Bose-Fermi Kondo fermion bath Jk Local moment fluctuating magnetic field g + self-consistency Cf. QS, S. Rabello, K. Ingersent and J.L.Smith, Phys. Rev. B ’03 for details

ε-expansion of Bose-Fermi Kondo model: JK Critical g LM Order ε: J. L. Smith & QS ’97; A. M. Sengupta ’97; Higher orders in ε and spin anisotropies: L. Zhu & QS ’02; G. Zarand & E. Demler ’02 J K = 0: S. Sachdev & J. Ye ’93 (large N); M. Vojta, C. Buragohain & S. Sachdev ‘00

ε-expansion of Bose-Fermi Kondo model: Ising SU(2) & XY Kondo Kondo JK JK Critical Critical g g Critical: Crucial for LQCP solution Order ε: J. L. Smith & QS ’97; A. M. Sengupta ’97; Higher orders in ε and spin anisotropies: L. Zhu & QS ’02; G. Zarand & E. Demler ’02 J K = 0: S. Sachdev & J. Ye ’93 (large N); M. Vojta, C. Buragohain & S. Sachdev ‘00

E-DMFT solution to the Kondo lattice The self-consistent fluctuating field bath: Destruction of Kondo screening: Kondo JK Critical Divergent χloc(ω) locates the local problem on the critical manifold g QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001)

Local Quantum Critical Point Destruction of Kondo screening (Eloc*  0) at the QCP Critical Kondo screening characterizes non-Fermi liquid excitations QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001) QS, J. L. Smith, and K. Ingersent, IJMPB 13, 2331 (1999)

Local Quantum Critical Point Destruction of Kondo effect (Eloc*  0) at the QCP Local susceptibility also diverges: where “spin self-energy” has anomalous exponent QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001)

Kondo lattice with Ising anisotropy EDMFT of (Quantum Monte Carlo algorithm of Grempel and Rozenberg ’99) Eloc* TN d ≡ IRKKY / TK0 The destruction of Kondo resonances (Eloc*  0) meets with the vanishing of the Néel temperature J.-X. Zhu, D. Grempel, & QS, Phys.Rev.Lett. ’03

EDMFT of Anderson lattice with Ising anisotropy ( P. Sun and G. Kotliar, Phys.Rev.Lett. ’03 ) EDMFT of Jc1 Jc2 d ≡ IRKKY / TK0 First order transition results from double-counting of RKKY interaction: QS, J-X Zhu, & D. R. Grempel, Journ. Phys. Cond. Matter ‘05 P. Sun and G. Kotliar, Phys.Rev. B ‘05

Kondo lattice with Ising anisotropy: Evidence for 2nd-order transition at T=0 (cont’d) mAF Eloc* @ T=0.01TK0 d ≡ IRKKY / TK0 mAF  0: continuous AF transition Eloc*  0: destruction of Kondo resonances

Quantum Critical Dynamics Local spin susceptibility at I ≈ Ic ≈ 1.2 T0K : cloc (wn) @ T=0.01TK0 wn Calculated  ≈ 0.7 D. Grempel and QS, Phys. Rev. Lett. ’03

Fractional exponent in the dynamics Inverse peak susceptibility at I ≈ Ic D. Grempel and QS, Phys. Rev. Lett. ’03 c --1(Q,wn) c --1(Q) a = 0.72 a = 0.72 d wn (T, Ic)  T; (T = 0)  (Ic – I)

Fermi Surface Evolution

In what sense is the QCP local? Localization of f-electrons Reconstruction of the Fermi surface across QCP m*  ∞ over the entire Fermi surface as   QCP Anomalous spin dynamics everywhere in q. Destruction of Kondo effect Non-Fermi liquid excitations part of the quantum-critical spectrum.

M. E. Fisher, S-K Ma, & B. G. Nickel, PRL ,76 Inherent quantum nature of the Kondo-destruction critical point (single-impurity Bose-Fermi Kondo model) Order parameter fluctuations: local Φ4 theory with ε=0.5 would be the upper critical “dimension” … M. E. Fisher, S-K Ma, & B. G. Nickel, PRL ,76 J. M. Kosterlitz, PRL ‘76 … for ε>0.5, the QCP would be Gaussian; should see violation of ω/T scaling

Inherent quantum nature of critical Kondo effect (S. Kirchner, T-H Park, QS, & D. R. Grempel, to be published ’05) ε=0.8 Related observations in related models: L. Zhu, S. Kirchner, QS, & A. Georges, Phys. Rev. Lett. ’04; M. Vojta, N-H Tong, & R. Bulla, Phys. Rev. Lett. , ’05 M. Glossop and K. Ingersent, cond-mat/0501601

Dynamical large-N limit of Bose-Fermi Kondo (Parcollet & Georges, PRL ‘97; Cox & Ruckenstein, PRL ‘93) Leading term: T(,T) = f(/T), with f(0) ≠f(∞) Cf. f(0) =f(∞) for Gaussian f.p. (Damle & Sachdev ’97) L. Zhu, S. Kirchner, QS, & A. Georges, Phys. Rev. Lett. ’04; S. Kirchner, L. Zhu, QS, & D. Natelson, cond-mat/0507215

Beyond microscopcs What is the field theory? For a<1, Smag is Gaussian; the q-dependence of M(q,ω) would be smooth. The coupling to Scritical-kondo makes a contribution to M(q,ω) which is presumably also smoothly q-dependent. The spatial anomalous dimension ηspatial=0.

Kondo Lattice in One Dimension (E. Pivovarov, & QS, Phys.Rev. B ’04) Earlier work on spin gap of the Kondo phase: O. Zachar, & A. M. Tsvelik, Phys. Rev. B ’01; E. Sikkema, I. Affleck, & S. R. White, Phys. Rev. Lett. ’97; O. Zachar, S. A. Kivelson, & V. J. Emery, Phys. Rev. Lett. ’96

SUMMARY Microscopic results of Kondo lattices: two types of quantum critical points T=0 SDW transition (Gaussian) Locally quantum-critical: destruction of Kondo effect exactly at the magnetic QCP (interacting) Plausible argument for robustness What is the field theory?