COSC 3340: Introduction to Theory of Computation

Slides:



Advertisements
Similar presentations
Turing Machines Memory = an infinitely long tape Persistent storage A read/write tape head that can move around the tape Initially, the tape contains only.
Advertisements

Deterministic Turing Machines
Introduction to Computability Theory
Lecture 16 Deterministic Turing Machine (DTM) Finite Control tape head.
Lecture 23UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 23.
Variants of Turing machines
Lecture 3UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 3.
Turing Machines New capabilities: –infinite tape –can read OR write to tape –read/write head can move left and right q0q0 input tape.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Fall 2004COMP 3351 Turing Machines. Fall 2004COMP 3352 The Language Hierarchy Regular Languages Context-Free Languages ? ?
CS 310 – Fall 2006 Pacific University CS310 Turing Machines Section 3.1 November 6, 2006.
Lecture 5 Turing Machines
Courtesy Costas Busch - RPI1 Turing Machines. Courtesy Costas Busch - RPI2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Turing Machines.
CS5371 Theory of Computation Lecture 10: Computability Theory I (Turing Machine)
Costas Busch - RPI1 Turing Machines. Costas Busch - RPI2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Lecture 27UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 27.
Prof. Busch - LSU1 Turing Machines. Prof. Busch - LSU2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 Turing Machines. 2 A Turing Machine Tape Read-Write head Control Unit.
AUTOMATA THEORY VIII.
Turing Machines A more powerful computation model than a PDA ?
UofH - COSC Dr. Verma COSC 3340: Introduction to Theory of Computation Rakesh Verma Computer Science Department University of Houston URL:
Lecture 2UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 2.
CSCI 2670 Introduction to Theory of Computing September 28, 2005.
Lecture 18UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 18.
Turing Machines Chapter 17. Languages and Machines SD D Context-Free Languages Regular Languages reg exps FSMs cfgs PDAs unrestricted grammars Turing.
THE CHURCH-TURING T H E S I S “ TURING MACHINES” Part 1 – Pages COMPUTABILITY THEORY.
Lecture 11UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 11.
Lecture 9  2010 SDU Lecture9: Turing Machine.  2010 SDU 2 Historical Note Proposed by Alan Turing in 1936 in: On Computable Numbers, with an application.
Theory of computing, part 4. 1Introduction 2Theoretical background Biochemistry/molecular biology 3Theoretical background computer science 4History of.
Lecture 14UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 14.
1 IDT Open Seminar ALAN TURING AND HIS LEGACY 100 Years Turing celebration Gordana Dodig Crnkovic, Computer Science and Network Department Mälardalen University.
Lecture 24UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 24.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Automata & Formal Languages, Feodor F. Dragan, Kent State University 1 CHAPTER 3 The Church-Turing Thesis Contents Turing Machines definitions, examples,
1 Introduction to Turing Machines
1 CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 12 Mälardalen University 2007.
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
Turing Machines Sections 17.6 – The Universal Turing Machine Problem: All our machines so far are hardwired. ENIAC
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
1 Turing Machines. 2 The Language Hierarchy Regular Languages Context-Free Languages ? ?
CSCI 2670 Introduction to Theory of Computing September 29, 2005.
Theory of Computation Automata Theory Dr. Ayman Srour.
Universal Turing Machine
Chapters 11 and 12 Decision Problems and Undecidability.
TM Macro Language MA/CSSE 474 Theory of Computation.
COSC 3340: Introduction to Theory of Computation
Lecture2 Regular Language
Busch Complexity Lectures: Turing Machines
Deterministic Turing Machines
COSC 3340: Introduction to Theory of Computation
COSC 3340: Introduction to Theory of Computation
Turing Machines 2nd 2017 Lecture 9.
COSC 3340: Introduction to Theory of Computation
Turing Machines Acceptors; Enumerators
COSC 3340: Introduction to Theory of Computation
COSC 3340: Introduction to Theory of Computation
Chapter 3: The CHURCH-Turing thesis
Intro to Theory of Computation
COSC 3340: Introduction to Theory of Computation
MA/CSSE 474 Theory of Computation
COSC 3340: Introduction to Theory of Computation
CSE S. Tanimoto Turing Completeness
Variants of Turing machines
COSC 3340: Introduction to Theory of Computation
Formal Definitions for Turing Machines
COSC 3340: Introduction to Theory of Computation
COSC 3340: Introduction to Theory of Computation
Intro to Theory of Computation
Presentation transcript:

COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 16 Lecture 16 UofH - COSC 3340 - Dr. Verma

Turing Machine (TM) . . . Bi-direction Read/Write Finite State control . . . Bi-direction Read/Write Finite State control Lecture 16 UofH - COSC 3340 - Dr. Verma

Historical Note Proposed by Alan Turing in 1936 in: On Computable Numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. (2) 42 pp 230-265 (1936-7); correction ibid. 43, pp 544-546 (1937). Lecture 16 UofH - COSC 3340 - Dr. Verma

Turing Machine (contd.) Based on (q, ), q – current state,  – symbol scanned by head, in one move, the TM can: (i) change state (ii) write a symbol in the scanned cell (iii) move the head one cell to the left or right Some (q, ) combinations may not have any moves. In this case the machine halts. Lecture 16 UofH - COSC 3340 - Dr. Verma

Turing Machine (contd.) We can design TM’s for computing functions from strings to strings We can design TM’s to decide languages using special states accept/reject or by writing Y/N on tape. We can design TM’s to accept languages. if TM halts string is accepted Note: there is a big difference between language decision and acceptance! Lecture 16 UofH - COSC 3340 - Dr. Verma

Example of TM for {0n1n | n > 0} English description of how the machine works: Look for 0’s If 0 found, change it to x and move right, else reject Scan past 0’s and y’s until you reach 1 If 1 found, change it to y and move left, else reject. Move left scanning past 0’s and y’s If x found move right If 0 found, loop back to step 2. If 0 not found, scan past y’s and accept. Head is on the left or start of the string. x and y are just variables to keep track of equality Lecture 16 UofH - COSC 3340 - Dr. Verma

Example of TM for {0n1n | n > 0} contd. Head is on the left or start of the string. State Symbol Next state action q0 (q1, x, R) 1 halt/reject x y (q3, y, R) Lecture 16 UofH - COSC 3340 - Dr. Verma

Example of TM for {0n1n | n > 0} contd. Head is on the left or start of the string. State Symbol Next state action q1 (q1, 0, R) 1 (q2, y, L) x halt/reject y (q1, y, R) Lecture 16 UofH - COSC 3340 - Dr. Verma

Example of TM for {0n1n | n > 0} contd. Head is on the left or start of the string. State Symbol Next state action q2 (q2, 0, L) 1 halt/reject x (q0, x, R) y (q2, y, L) Lecture 16 UofH - COSC 3340 - Dr. Verma

Example of TM for {0n1n | n > 0} contd. Head is on the left or start of the string. State Symbol Next state action q3 halt/reject 1 x y (q3, y, R) □ (q4, □, R) Lecture 16 UofH - COSC 3340 - Dr. Verma

Example of TM for {0n1n | n > 0} contd. Head is on the left or start of the string. State Symbol Next state action q4 illegal i/p 1 x y □ halt/accept Lecture 16 UofH - COSC 3340 - Dr. Verma

Example of TM for {0n1n | n  0} contd. Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

JFLAP SIMULATION Lecture 16 UofH - COSC 3340 - Dr. Verma

Formal Definition of TM Formally a TM M = (Q, , , , s) where, Q – a finite set of states – input alphabet not containing the blank symbol # – the tape alphabet of M s in Q is the start state  : Q X   Q X  X {L, R} is the (partial) transition function. Note: (i) We leave out special states. (ii) The model is deterministic but we just say TM instead of DTM. Lecture 16 UofH - COSC 3340 - Dr. Verma