Introduction to Finite Element Methods

Slides:



Advertisements
Similar presentations
MEG 361 CAD Finite Element Method Dr. Mostafa S. Hbib.
Advertisements

Finite element method Among the up-to-date methods of stress state analysis, the finite element method (abbreviated as FEM below, or often as FEA for analyses.
MANE 4240 & CIVL 4240 Introduction to Finite Elements
Beams and Frames.
LECTURE SERIES on STRUCTURAL OPTIMIZATION Thanh X. Nguyen Structural Mechanics Division National University of Civil Engineering
MANE 4240 & CIVL 4240 Introduction to Finite Elements Practical considerations in FEM modeling Prof. Suvranu De.
MANE 4240 & CIVL 4240 Introduction to Finite Elements
Physics Based Modeling II Deformable Bodies Lecture 2 Kwang Hee Ko Gwangju Institute of Science and Technology.
By S Ziaei-Rad Mechanical Engineering Department, IUT.
Chapter 17 Design Analysis using Inventor Stress Analysis Module
ECIV 720 A Advanced Structural Mechanics and Analysis
Finite Element Primer for Engineers: Part 2
Copyright 2001, J.E. Akin. All rights reserved. CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress Analysis.
FE analysis with bar elements E. Tarallo, G. Mastinu POLITECNICO DI MILANO, Dipartimento di Meccanica.
Bars and Beams FEM Linear Static Analysis
FEA Simulations Usually based on energy minimum or virtual work Component of interest is divided into small parts – 1D elements for beam or truss structures.
Copyright © 2002J. E. Akin Rice University, MEMS Dept. CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress.
Outline Introduction to Finite Element Formulations
Finite Element Method in Geotechnical Engineering
MANE 4240 & CIVL 4240 Introduction to Finite Elements
ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 10: Solution of Continuous Systems – Fundamental Concepts Mixed Formulations Intrinsic Coordinate.
MECh300H Introduction to Finite Element Methods
One-Dimensional Problems
ECIV 720 A Advanced Structural Mechanics and Analysis
MCE 561 Computational Methods in Solid Mechanics
ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 7: Formulation Techniques: Variational Methods The Principle of Minimum Potential Energy.
CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES
III Solution of pde’s using variational principles
EMA 405 Introduction. Syllabus Textbook: none Prerequisites: EMA 214; 303, 304, or 306; EMA 202 or 221 Room: 2261 Engineering Hall Time: TR 11-12:15 Course.
Finite Element: Theory, Applications & Implementation Presented By: Arthur Anconetani Barbara Gault Ryan Whitney.
The Finite Element Method
Introduction to virtual engineering László Horváth Budapest Tech John von Neumann Faculty of Informatics Institute of Intelligent Engineering.
Outline Lesson 1. Introduction to ANSYS Lesson 2. Basics Lesson 3. Solution phases Lesson 4. Modeling Lesson 5. Material Lesson 6. Loading Lesson 7. Solution.
General Procedure for Finite Element Method FEM is based on Direct Stiffness approach or Displacement approach. A broad procedural outline is listed.
ME 520 Fundamentals of Finite Element Analysis
An introduction to the finite element method using MATLAB
11/11/20151 Trusses. 11/11/20152 Element Formulation by Virtual Work u Use virtual work to derive element stiffness matrix based on assumed displacements.
Summer School for Integrated Computational Materials Education 2015 Computational Mechanics: Basic Concepts and Finite Element Method Katsuyo Thornton.
Finite Element Method Brian Hammond Ivan Lopez Ingrid Sarvis.
Illustration of FE algorithm on the example of 1D problem Problem: Stress and displacement analysis of a one-dimensional bar, loaded only by its own weight,
HEAT TRANSFER FINITE ELEMENT FORMULATION
HCMUT 2004 Faculty of Applied Sciences Hochiminh City University of Technology The Finite Element Method PhD. TRUONG Tich Thien Department of Engineering.
MECH4450 Introduction to Finite Element Methods
CHAP 3 WEIGHTED RESIDUAL AND ENERGY METHOD FOR 1D PROBLEMS
11 10-Jan-16 Last course Interpretations and properties of the stiffness matrix (cont’d) The DSM for plane and space trusses.
Finite Element: Theory, Applications & Implementation Presented By: Arthur Anconetani Barbara Gault Ryan Whitney.
CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress Analysis –Thermal Analysis –Structural Dynamics –Computational.
X1X1 X2X2  Basic Kinematics Real Applications Simple Shear Trivial geometry Proscribed homogenous deformations Linear constitutive.
1 CHAP 3 WEIGHTED RESIDUAL AND ENERGY METHOD FOR 1D PROBLEMS FINITE ELEMENT ANALYSIS AND DESIGN Nam-Ho Kim.
Our task is to estimate the axial displacement u at any section x
Introduction to Finite Element Method
Finite Element Method Weak form Monday, 11/4/2002.
Finite Element Method in Geotechnical Engineering
Finite Element Application
1D OF FINITE ELEMENT METHOD Session 4 – 6
Overview of Finite Element Methods
MANE 4240 & CIVL 4240 Introduction to Finite Elements
CAD and Finite Element Analysis
FEM : Finite Element Method 2017.
Finite element method Among the up-to-date methods of stress state analysis, finite element method (abbreviated as FEM below, or often as FEA for analyses.
FEA Introduction.
Beams and Frames.
Materials Science & Engineering University of Michigan
1C9 Design for seismic and climate changes
FEA convergence requirements.
FEA Simulations Boundary conditions are applied
ECIV 720 A Advanced Structural Mechanics and Analysis
SME FINITE ELEMENT METHOD
Chapter 2 Rudiment of Structural Analysis and FEM
UNIT – I FLEXIBILITY MATRIX METHOD
Presentation transcript:

Introduction to Finite Element Methods MCE 565 Wave Motion & Vibration in Continuous Media Spring 2005 Professor M. H. Sadd

Need for Computational Methods Solutions Using Either Strength of Materials or Theory of Elasticity Are Normally Accomplished for Regions and Loadings With Relatively Simple Geometry Many Applicaitons Involve Cases with Complex Shape, Boundary Conditions and Material Behavior Therefore a Gap Exists Between What Is Needed in Applications and What Can Be Solved by Analytical Closed-form Methods This Has Lead to the Development of Several Numerical/Computational Schemes Including: Finite Difference, Finite Element and Boundary Element Methods

Introduction to Finite Element Analysis The finite element method is a computational scheme to solve field problems in engineering and science. The technique has very wide application, and has been used on problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, electrical and magnetic fields, etc. The fundamental concept involves dividing the body under study into a finite number of pieces (subdomains) called elements (see Figure). Particular assumptions are then made on the variation of the unknown dependent variable(s) across each element using so-called interpolation or approximation functions. This approximated variation is quantified in terms of solution values at special element locations called nodes. Through this discretization process, the method sets up an algebraic system of equations for unknown nodal values which approximate the continuous solution. Because element size, shape and approximating scheme can be varied to suit the problem, the method can accurately simulate solutions to problems of complex geometry and loading and thus this technique has become a very useful and practical tool.

Advantages of Finite Element Analysis - Models Bodies of Complex Shape - Can Handle General Loading/Boundary Conditions - Models Bodies Composed of Composite and Multiphase Materials - Model is Easily Refined for Improved Accuracy by Varying Element Size and Type (Approximation Scheme) - Time Dependent and Dynamic Effects Can Be Included - Can Handle a Variety Nonlinear Effects Including Material Behavior, Large Deformations, Boundary Conditions, Etc.

Basic Concept of the Finite Element Method Any continuous solution field such as stress, displacement, temperature, pressure, etc. can be approximated by a discrete model composed of a set of piecewise continuous functions defined over a finite number of subdomains. One-Dimensional Temperature Distribution Exact Analytical Solution x T Approximate Piecewise Linear Solution

Two-Dimensional Discretization u(x,y) Approximate Piecewise Linear Representation

Discretization Concepts

Common Types of Elements Two-Dimensional Elements Triangular, Quadrilateral Plates, Shells, 2-D Continua One-Dimensional Elements Line Rods, Beams, Trusses, Frames Three-Dimensional Elements Tetrahedral, Rectangular Prism (Brick) 3-D Continua

Discretization Examples Three-Dimensional Brick Elements One-Dimensional Frame Elements Two-Dimensional Triangular Elements

Basic Steps in the Finite Element Method Time Independent Problems - Domain Discretization - Select Element Type (Shape and Approximation) - Derive Element Equations (Variational and Energy Methods) - Assemble Element Equations to Form Global System   [K]{U} = {F} [K] = Stiffness or Property Matrix {U} = Nodal Displacement Vector {F} = Nodal Force Vector   - Incorporate Boundary and Initial Conditions  - Solve Assembled System of Equations for Unknown Nodal Displacements and Secondary Unknowns of Stress and Strain Values

Common Sources of Error in FEA Domain Approximation Element Interpolation/Approximation Numerical Integration Errors (Including Spatial and Time Integration) Computer Errors (Round-Off, Etc., )

Measures of Accuracy in FEA Error = |(Exact Solution)-(FEM Solution)| Convergence Limit of Error as: Number of Elements (h-convergence) or Approximation Order (p-convergence) Increases Ideally, Error  0 as Number of Elements or Approximation Order  

Two-Dimensional Discretization Refinement (Discretization with 228 Elements) (Discretization with 912 Elements) (Triangular Element) (Node) 

One Dimensional Examples Static Case Bar Element Uniaxial Deformation of Bars Using Strength of Materials Theory Beam Element Deflection of Elastic Beams Using Euler-Bernouli Theory 1 2 w1 w2 q2 q1 1 2 u1 u2

Two Dimensional Examples Triangular Element Scalar-Valued, Two-Dimensional Field Problems Triangular Element Vector/Tensor-Valued, Two-Dimensional Field Problems u1 u2 1 2 3 u3 v1 v2 v3 1 2 3 f1 f2 f3

Development of Finite Element Equation The Finite Element Equation Must Incorporate the Appropriate Physics of the Problem For Problems in Structural Solid Mechanics, the Appropriate Physics Comes from Either Strength of Materials or Theory of Elasticity FEM Equations are Commonly Developed Using Direct, Variational-Virtual Work or Weighted Residual Methods Direct Method Based on physical reasoning and limited to simple cases, this method is worth studying because it enhances physical understanding of the process Variational-Virtual Work Method Based on the concept of virtual displacements, leads to relations between internal and external virtual work and to minimization of system potential energy for equilibrium Weighted Residual Method Starting with the governing differential equation, special mathematical operations develop the “weak form” that can be incorporated into a FEM equation. This method is particularly suited for problems that have no variational statement. For stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that found by variational methods.

Simple Element Equation Example Direct Stiffness Derivation 1 2 k u1 u2 F1 F2 Stiffness Matrix Nodal Force Vector

Common Approximation Schemes One-Dimensional Examples Polynomial Approximation Most often polynomials are used to construct approximation functions for each element. Depending on the order of approximation, different numbers of element parameters are needed to construct the appropriate function. Linear Quadratic Cubic Special Approximation For some cases (e.g. infinite elements, crack or other singular elements) the approximation function is chosen to have special properties as determined from theoretical considerations

One-Dimensional Bar Element

One-Dimensional Bar Element Axial Deformation of an Elastic Bar x f(x) = Distributed Loading A = Cross-sectional Area E = Elastic Modulus Typical Bar Element W (i) L (j) (Two Degrees of Freedom) Virtual Strain Energy = Virtual Work Done by Surface and Body Forces For One-Dimensional Case

Linear Approximation Scheme x (local coordinate system) (1) (2) L x (1) (2) u(x) y1(x) y2(x) 1 x (1) (2) yk(x) – Lagrange Interpolation Functions

Element Equation Linear Approximation Scheme, Constant Properties

Quadratic Approximation Scheme (1) (3) (2) L u(x) x (1) (3) (2) y2(x) y3(x) y1(x) 1 x (1) (2) (3)

Lagrange Interpolation Functions Using Natural or Normalized Coordinates (1) (2) (1) (2) (3) (1) (2) (3) (4)

Simple Example P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2

Simple Example Continued A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2

One-Dimensional Beam Element Deflection of an Elastic Beam I = Section Moment of Inertia E = Elastic Modulus f(x) = Distributed Loading x W (1) (2) Typical Beam Element L (Four Degrees of Freedom) Virtual Strain Energy = Virtual Work Done by Surface and Body Forces

Beam Approximation Functions To approximate deflection and slope at each node requires approximation of the form Evaluating deflection and slope at each node allows the determination of ci thus leading to

Beam Element Equation

FEA Beam Problem f Uniform EI a b (1) (3) (2) 1 2

FEA Beam Problem (1) (3) (2) 1 2 Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4 Nodal Forces Q1 and Q2 Can Then Be Determined

Special Features of Beam FEA Analytical Solution Gives Cubic Deflection Curve Analytical Solution Gives Quartic Deflection Curve FEA Using Hermit Cubic Interpolation Will Yield Results That Match Exactly With Cubic Analytical Solutions

Truss Element Generalization of Bar Element With Arbitrary Orientation k=AE/L x

Frame Element Generalization of Bar and Beam Element with Arbitrary Orientation W (1) (2) L Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation

Some Standard FEA References Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995. Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993 Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990. Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987. Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002. Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley, 1989. Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979. Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001. Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986. Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994. Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993. Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992. Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003. Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992. Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986. Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998. Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993. Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993. Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.