Warm-up: Find the exact values of the other 5 trigonometric functions given sin= 3 2 with 0 <  < 90 CW: Right Triangle Trig.

Slides:



Advertisements
Similar presentations
Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
Advertisements

Special Triangles: 45 o -45 o -90 o ° x x Example: 45° 7 7 x x.
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Work out the answer Hit the down arrow to check.
Trigonometry/Precalculus ( R )
Let’s Play What have you learned about Analytic Geometry?
TODAY IN GEOMETRY…  Review: Methods solving for missing sides of a right triangle  Learning Target: 7.6 Finding an angle using inverse Trigonometry 
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 7.2 Right Triangle Trigonometry.
EXAMPLE 1 Use an inverse tangent to find an angle measure
4.7 Inverse Trigonometric Functions
Sec 6.2 Trigonometry of Right Triangles
Right Triangle Trigonometry
Sum and Difference Formulas New Identities. Cosine Formulas.
Sec 6.2 Trigonometry of Right Triangles Objectives: To define and use the six trigonometric functions as ratios of sides of right triangles. To review.
Warm- Up 1. Find the sine, cosine and tangent of  A. 2. Find x. 12 x 51° A.
Tuesday 3/24. Warm Up Determine the six trigonometric ratios for the following triangle: y r x θ sin θ =csc θ = cos θ =sec θ = tan θ =cot θ = What if.
Chapter 6 – Trigonometric Functions: Right Triangle Approach Trigonometric Functions of Angles.
Chapter 4 Trigonometric Functions Trig Functions of Any Angle Objectives:  Evaluate trigonometric functions of any angle.  Use reference angles.
Warm-Up 8/26 Simplify the each radical expression
4.3 Right Triangle Trigonometry
+ 4.4 Trigonometric Functions of Any Angle *reference angles *evaluating trig functions (not on TUC)
13.1 – Use Trig with Right Triangles
_______º _______ rad _______º ________ rad ­­­­ _______º _______ rad _______º _______ rad ­­­­ _______º _______ rad ______º _______ rad Unit Circle use.
Section 1.4 Trigonometric Functions an ANY Angle Evaluate trig functions of any angle Use reference angles to evaluate trig functions.
Section 5.2 Right Triangle Trigonometry. Function Values for Some Special Angles.
BELL-WORK TCAP Bell-Work # 27,28 TB pg 604 #25-33.
Warm-Up Write the sin, cos, and tan of angle A. A BC
4.4 – Trigonometric Functions of any angle. What can we infer?? *We remember that from circles anyway right??? So for any angle….
8-1 Standards 8a - Draw angles that are negative or are larger than 180° 8b - Find the quadrant and reference angles of a given angle in standard position.
Pg. 323/361 Homework Pg. 362 #39 – 47 odd, 51, 52 Memorize Trig. Info #2QIV#4QIII#6QIII #8-250°#10470° #12338°, 698°, -382°, -742°#14210°, 570°, -510°,
Warm Up If name is on the board put HW on the board Complete the warm up on the board with a partner. Section 8.3.
Quiz 36 Application Problem #1 1. Convert from revolutions into radians 2. Write the Equation and fill in information 3. Convert from ft/sec to mi/hr 4.
4.2 Trig Functions of Acute Angles. Trig Functions Adjacent Opposite Hypotenuse A B C Sine (θ) = sin = Cosine (θ ) = cos = Tangent (θ) = tan = Cosecant.
Warm – up Find the sine, cosine and tangent of angle c.
Aim: What are the identities of sin (A ± B) and tan (A ±B)? Do Now: Write the cofunctions of the following 1. sin 30  2. sin A  3. sin (A + B)  sin.
6.1 – 6.5 Review!! Graph the following. State the important information. y = -3csc (2x) y = -cos (x + π/2) Solve for the following: sin x = 0.32 on [0,
Precalculus 12/4/2014 DO NOW/Bellwork 1)Convert to radians 220º AGENDA o Do Now/Bellwork o HW questions o SOHCAHTOA and its applications Essential Question:
4.3 Right Triangle Trigonometry Objective: In this lesson you will learn how to evaluate trigonometric functions of acute angles and how to use the fundamental.
Section 4.4 Trigonometric Functions of Any Angle.
Objective: Use unit circle to define trigonometric functions. Even and odd trig functions. Warm up 1.Find and. 2.Give the center and radius of a circle.
EXAMPLE 1 Use an inverse tangent to find an angle measure Use a calculator to approximate the measure of A to the nearest tenth of a degree. SOLUTION Because.
5.2 Trigonometric Ratios in Right Triangles. A triangle in which one angle is a right angle is called a right triangle. The side opposite the right angle.
Right Triangle Trigonometry
Warm Up Use trigonometric identities to simplify: csc ∙tan
Graphs of Trigonometric Functions
Special Angle Values.
Trigonometric Function: The Unit circle
7.7 Solve Right Triangles Obj: Students will be able to use trig ratios and their inverses to solve right triangles.
Use an addition or subtraction formula to find the exact value of the expression: {image} Select the correct answer: {image}
Section 4.2: Trigonometric Functions of Acute Angles
Warm-Up 1 Find the value of x..
Trigonometric Functions of Acute Angles
Warm-up: HW: pg. 490(1 – 4, 7 – 16, , 45 – 48)
Warm – Up: 2/4 Convert from radians to degrees.
Trigonometric Function: The Unit circle
Trigonometric Functions: The Unit Circle (Section 4-2)
Sketch a triangle that has acute angle {image} , and sin( {image} ) = Choose the right trigonometric ratios of {image} . cos( {image} ) = 0.24 tan(
Trigonometric Functions of Any Angle (Section 4-4)
4.2 Trigonometric Function: The Unit circle
8.3 Trigonometry By Brit Caswell.
Warm-up: Find the tan 5
2) Find one positive and one negative coterminal angle to
Right Triangle Trigonometry
4.3 – Trig Functions on the Unit Circle
Warm – up Find the sine, cosine and tangent of angle c.
1.3 – Trigonometric Functions
Warm-up: Find the measure of angle A given: a = 15, b = 14, c = 10
Sec 6.2 Trigonometry of Right Triangles
x x HW 13: Inverse Trig Functions HW 13: Inverse Trig Functions
Warm-up: Solve the triangle. mA = 70, c = 26, a = 25
Warm-up: (1 − sin 2 x) sec 2 x = cos 2 x sec 2 x = 1
Presentation transcript:

Warm-up: Find the exact values of the other 5 trigonometric functions given sin= 3 2 with 0 <  < 90 CW: Right Triangle Trig

4) 𝑠𝑖𝑛= 2 2 , 𝑐𝑜𝑠= 2 2 , 𝑡𝑎𝑛=1, 𝑐𝑠𝑐= 2 , 𝑠𝑒𝑐= 2 , 𝑐𝑜𝑡=1 HW Answers: pg.387 (2 – 16 even, 33 – 36, 37 – 39, 47 – 52, 59 – 66) 2) 𝑠𝑖𝑛= 5 13 , 𝑐𝑜𝑠= 12 13 , 𝑡𝑎𝑛= 5 12 , 𝑐𝑠𝑐= 13 5 , 𝑠𝑒𝑐= 13 12 , 𝑐𝑜𝑡= 12 5 4) 𝑠𝑖𝑛= 2 2 , 𝑐𝑜𝑠= 2 2 , 𝑡𝑎𝑛=1, 𝑐𝑠𝑐= 2 , 𝑠𝑒𝑐= 2 , 𝑐𝑜𝑡=1 6) 𝑠𝑖𝑛= 8 15 , 𝑐𝑜𝑠= 161 15 , 𝑡𝑎𝑛= 8 161 161 , 𝑐𝑠𝑐= 15 8 , 𝑠𝑒𝑐= 15 161 161 , 𝑐𝑜𝑡= 161 8 8) 𝑠𝑖𝑛= 5 5 , 𝑐𝑜𝑠= 2 5 5 , 𝑡𝑎𝑛= 1 2 , 𝑐𝑠𝑐= 5 , 𝑠𝑒𝑐= 5 2 , 𝑐𝑜𝑡=2 10) 𝑠𝑖𝑛= 26 26 , 𝑐𝑜𝑠= 5 26 26 , 𝑡𝑎𝑛= 1 5 , 𝑐𝑠𝑐= 26 , 𝑠𝑒𝑐= 26 5 12) 𝑠𝑖𝑛= 2 6 7 , 𝑡𝑎𝑛= 2 6 5 , 𝑐𝑠𝑐= 7 6 12 , 𝑠𝑒𝑐= 7 5 , 𝑐𝑜𝑡= 5 6 12 14) 𝑠𝑖𝑛= 4 17 , 𝑐𝑜𝑠= 273 17 , 𝑡𝑎𝑛= 4 273 273 , 𝑠𝑒𝑐= 17 273 273 , 𝑐𝑜𝑡= 273 4 16) 𝑐𝑜𝑠= 55 8 , 𝑡𝑎𝑛= 3 55 55 , 𝑐𝑠𝑐= 8 3 , 𝑠𝑒𝑐= 8 55 55 , 𝑐𝑜𝑡= 55 3 33) 𝑎. 1 2 𝑏. 3 3 34) 𝑎. 2 𝑏. 2 2 35) 𝑎. 1 𝑏. 2 2 36) a. 3 2 𝑏. 2 37) a. 0.1736 b. 0.1736 38) a. 0.4348 b. 0.4348 39) a. 0.2815 b. 3.5523

a. 30°= 𝜋 6 𝑏. 30°= 𝜋 6 a. 45°= 𝜋 4 𝑏. 45°= 𝜋 4 a. 60°= 𝜋 3 𝑏. 45°= 𝜋 4 a. 60°= 𝜋 3 𝑏. 60°= 𝜋 3 59) 32 3 3 60) 20 2 23.3 68.7 6.1 96.6 17.25 ft a. b. 6/3 = h/135 c.270ft h 6 132 3

Sneedlegrit: Let  be an acute angle such that tan = 4 Find the other six trigonometric functions. CW: Right Triangle Trig