Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density  K. Akiyama,

Slides:



Advertisements
Similar presentations
Lower cervical spine facet cartilage thickness mapping
Advertisements

Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Where does meniscal damage progress most rapidly
Increased acetabular subchondral bone density is associated with cam-type femoroacetabular impingement  A.D. Speirs, P.E. Beaulé, K.S. Rakhra, M.E. Schweitzer,
Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running  T.J. Mosher, Y. Liu, C.M. Torok 
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density  W.D. Burnett, S.A. Kontulainen,
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Extraction of anatomical landmarks and axis for 3D coordinate system construction of femur and tibia bone models  X. Cui, H. Kim, S. Li, K.-S. Kwack,
Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis  F. Intema, T.P. Thomas,
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
J.H. Koolstra  Osteoarthritis and Cartilage 
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
C. Shi, G.J. Wright, C.L. Ex-Lubeskie, A.D. Bradshaw, H. Yao 
The groove model of osteoarthritis applied to the ovine fetlock joint
Y. H. Sniekers, G. J. V. M. van Osch, A. G. H. Ederveen, J. Inzunza, J
B.J. Ahern, J. Parvizi, R. Boston, T.P. Schaer 
Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy  C.L. Abraham,
B.J. Ahern, J. Parvizi, R. Boston, T.P. Schaer 
Three-dimensional MRI-based statistical shape model and application to a cohort of knees with acute ACL injury  V. Pedoia, D.A. Lansdown, M. Zaid, C.E.
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
C. R. Henak, C. L. Abraham, A. E. Anderson, S. A. Maas, B. J. Ellis, C
Altered bone density and stress distribution patterns in long-standing cubitus varus deformity and their effect during early osteoarthritis of the elbow 
Evaluation of translation in the normal and dysplastic hip using three-dimensional magnetic resonance imaging and voxel-based registration  K. Akiyama,
Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions  L. Wan, B.S., R.J. de Asla, M.D.,
Quantitatively-measured bone marrow lesions in the patellofemoral joint: distribution and association with pain  C. Ratzlaff, R. Russell, J. Duryea  Osteoarthritis.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Three-dimensional distribution of articular cartilage thickness in the elderly cadaveric acetabulum: a new method using three-dimensional digitizer and.
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
M. Finnilä, O-M. Aho, V. Tiitu, J. Thevenot, J. Rautiainen, M
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system  S.A. Millington, B.M.B.S., M.R.C.S.
Osteoarthritis and Cartilage
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
Demineralized bone matrix and platelet-rich plasma do not improve healing of osteochondral defects of the talus: an experimental goat study  C.J.A. van.
P. -H. Tsai, M. -C. Chou, H. -S. Lee, C. -H. Lee, H. -W. Chung, Y. -C
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis 
Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis 
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores  N.L.A. Fell, B.M. Lawless,
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
Dr J. H. Naish, Ph. D. , Dr E. Xanthopoulos, Ph. D. , Dr C. E
Three-dimensional patterns of early acetabular cartilage damage in hip dysplasia; a high-resolutional CT arthrography study  S. Tamura, T. Nishii, T.
Influence of medial meniscectomy on stress distribution of the femoral cartilage in porcine knees: a 3D reconstructed T2 mapping study  T. Shiomi, T.
Effects of low level laser therapy: a study of status of cartilage, subchondral bone and gait adaptation in the rat anterior cruciate ligament transection.
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Comparison of BLOKS and WORMS scoring systems part I
Three dimensional distribution of hip cartilage t2 mapping assessed by radial mr imaging: comparison between healthy volunteers and patients with hip.
Alessio Bernasconi, M. D. , Claude Guillard, M. D. , François Lintz, M
Lower cervical spine facet cartilage thickness mapping
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury  E.C. Argentieri, D.R. Sturnick, M.J. DeSarno,
Evidence for bone mineral density and bone resorption in middle and elderly women with knee osteoarthritis in Shanghai: a cross sectional study  Q. Xiaofeng 
The association between hip bone marrow lesions and bone mineral density: a cross- sectional and longitudinal population-based study  H. Ahedi, D. Aitken,
A comparison of intra-articular hyaluronan injection accuracy rates between three approaches based on radiographic severity of knee osteoarthritis  Y.
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary.
Osteoarthritis year 2012 in review: biology
C. R. Henak, E. D. Carruth, A. E. Anderson, M. D. Harris, B. J
M. Hudelmaier, W. Wirth  Osteoarthritis and Cartilage 
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
Osteoarthritis year in review 2016: mechanics
Three-dimensional distribution of acetabular cartilage thickness in patients with hip dysplasia: a fully automated computational analysis of MR imaging 
M. Doherty, P. Dieppe  Osteoarthritis and Cartilage 
General Information Osteoarthritis and Cartilage
Presentation transcript:

Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density  K. Akiyama, T. Sakai, N. Sugimoto, H. Yoshikawa, K. Sugamoto  Osteoarthritis and Cartilage  Volume 20, Issue 4, Pages 296-304 (April 2012) DOI: 10.1016/j.joca.2011.12.014 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 All specimens were fixed and digitized such that the articular surfaces of interest faced upwards. Osteoarthritis and Cartilage 2012 20, 296-304DOI: (10.1016/j.joca.2011.12.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Surface models of a left talus. (a) Surface model obtained using the 3D-digitizer, showing the talocrural cartilage surface. (b) Surface model obtained from 3D-CT in the same specimen, showing the talocrural subchondral bone surface. (c) Registration of the two models by surface registration of the steel spheres. The black line indicates sectioning of the talus. (d) Cross-section along the line shown in (c). The inferred cartilage is colored pink. Osteoarthritis and Cartilage 2012 20, 296-304DOI: (10.1016/j.joca.2011.12.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 3D distribution of talocrural articular cartilage thickness of the talus shown in Fig. 2 using the proximity mapping method. The color scale is in millimeters (A, anterior; AC, anterocentral; PC, posterocentral; P, posterior; M, medial; C, central; and L, lateral). Osteoarthritis and Cartilage 2012 20, 296-304DOI: (10.1016/j.joca.2011.12.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 3D distribution of posterior subtalar articular cartilage thickness of the talus shown in Fig. 2, using the proximity mapping method. The color scale is in millimeters (A, anterior; P, posterior; M, medial; L, lateral; AM, anteromedial; AC, anterocentral; AL, anterolateral; CM, centromedial; C, central; CL, centrolateral; PM, posteromedial; PC, posterocentral; and PL, posterolateral). Osteoarthritis and Cartilage 2012 20, 296-304DOI: (10.1016/j.joca.2011.12.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 3D distribution of posterior subtalar articular cartilage thickness of a left calcaneus, using the proximity mapping method. The color scale is in millimeters (A, anterior; P, posterior; M, medial; L, lateral; AM, anteromedial; AC, anterocentral; AL, anterolateral; CM, centromedial; C, central; CL, centrolateral; PM, posteromedial; PC, posterocentral; and PL, posterolateral). Osteoarthritis and Cartilage 2012 20, 296-304DOI: (10.1016/j.joca.2011.12.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 (a) Cross-section of the surface model of a talus made by 3D-digitizer and 3D-CT, showing inferred cartilage thickness. (b) Anatomic counterpart section. Osteoarthritis and Cartilage 2012 20, 296-304DOI: (10.1016/j.joca.2011.12.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Bar charts showing mean cartilage thickness in the (a) talocrural surface of the talus, (b) posterior subtalar surface of the talus, and (c) posterior subtalar surface of the calcaneus. Error bars demonstrate 1 standard deviation. Osteoarthritis and Cartilage 2012 20, 296-304DOI: (10.1016/j.joca.2011.12.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 8 Bar charts showing maximum cartilage thickness in the (a) talocrural surface of the talus, (b) posterior subtalar surface of the talus, and (c) posterior subtalar surface of the calcaneus. Error bars demonstrate 1 standard deviation. Osteoarthritis and Cartilage 2012 20, 296-304DOI: (10.1016/j.joca.2011.12.014) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions