Partial trisomy 21 contributes to T-cell malignancies induced by JAK3-activating mutations in murine models by Paola Rivera-Munoz, Anouchka P. Laurent,

Slides:



Advertisements
Similar presentations
Joseph H. Chewning, Weiwei Zhang, David A. Randolph, C
Advertisements

by Jad I. Belle, David Langlais, Jessica C
Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions by David Yao,
High-Risk Acute Lymphoblastic Leukemia Cells with bcr-abl and Ink4a/Arf Mutations Retain Susceptibility to Alloreactive T Cells  Faith M. Young, Andrew.
Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad by Anna Frenzel, Verena Labi, Waldemar Chmelewskij, Christian Ploner, Stephan.
Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models by Melanie G. Cornejo, Michael G. Kharas,
by Yosuke Tanaka, Takumi Era, Shin-ichi Nishikawa, and Shin Kawamata
In vivo retroviral gene transfer by direct intrafemoral injection results in correction of the SCID phenotype in Jak3 knock-out animals by Christine S.
Continuous in vivo infusion of interferon-gamma (IFN-γ) enhances engraftment of syngeneic wild-type cells in Fanca–/– and Fancg–/– mice by Yue Si, Samantha.
CCR2 is required for CD8-induced graft-versus-host disease
Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34+ cells by Christian P. Kalberer, Uwe Siegler, and Aleksandra Wodnar-Filipowicz.
by Silke Huber, Reinhard Hoffmann, Femke Muskens, and David Voehringer
William H. D. Hallett, Weiqing Jing, William R. Drobyski, Bryon D
Volume 129, Issue 6, Pages (June 2007)
by Daniel L. Barber, Katrin D. Mayer-Barber, Lis R. V
The tyrosine phosphatase SHP-1 dampens murine Th17 development
Runx1 deficiency predisposes mice to T-lymphoblastic lymphoma
IL-21 blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory cell generation by Christoph Bucher, Lisa Koch, Christine.
Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists by Christopher T.
by Signe Hässler, Chris Ramsey, Mikael C
by Hyung-Gyoon Kim, Kyoko Kojima, C. Scott Swindle, Claudiu V
Lack of the adhesion molecules P-selectin and intercellular adhesion molecule-1 accelerate the development of BCR/ABL-induced chronic myeloid leukemia-like.
TLR5 signaling in murine bone marrow induces hematopoietic progenitor cell proliferation and aids survival from radiation by Benyue Zhang, Damilola Oyewole-Said,
IL-17 Gene Ablation Does Not Impact Treg-Mediated Suppression of Graft-Versus-Host Disease after Bone Marrow Transplantation  Lucrezia Colonna, Mareike.
Volume 142, Issue 2, Pages e2 (February 2012)
DNA Damage-Mediated Induction of a Chemoresistant Niche
Distinct classes of c-Kit–activating mutations differ in their ability to promote RUNX1-ETO–associated acute myeloid leukemia by Heidi J. Nick, Hyung-Gyoon.
FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant.
by Anil Dangi, Lei Zhang, Xiaomin Zhang, and Xunrong Luo
FTY720 Markedly Increases Alloengraftment but Does Not Eliminate Host Anti-Donor T Cells that Cause Graft Rejection on Its Withdrawal  Patricia A. Taylor,
by Ute Koch, Anne Wilson, Monica Cobas, Rolf Kemler, H
Inhibition of Cathepsin S Reduces Allogeneic T Cell Priming but Not Graft-versus-Host Disease Against Minor Histocompatibility Antigens  Hisaki Fujii,
Volume 30, Issue 4, Pages (October 2016)
Thomas R Malek, Aixin Yu, Vladimir Vincek, Paul Scibelli, Lin Kong 
Replacing mouse BAFF with human BAFF does not improve B-cell maturation in hematopoietic humanized mice by Julie Lang, Bicheng Zhang, Margot Kelly, Jacob.
Volume 23, Issue 1, Pages (April 2018)
IKKβ Is Essential for Protecting T Cells from TNFα-Induced Apoptosis
T helper17 Cells Are Sufficient But Not Necessary to Induce Acute Graft-Versus-Host Disease  Cristina Iclozan, Yu Yu, Chen Liu, Yaming Liang, Tangsheng.
DNA Damage-Mediated Induction of a Chemoresistant Niche
by Adrienne Sallets, Sophie Robinson, Adel Kardosh, and Ronald Levy
T Cell and B Cell Immunity can be Reconstituted with Mismatched Hematopoietic Stem Cell Transplantation Without Alkylator Therapy in Artemis-Deficient.
Acquisition of a Functional T Cell Receptor during T Lymphocyte Development Is Enforced by HEB and E2A Transcription Factors  Mary Elizabeth Jones, Yuan.
Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells by Xiaoli Wang, Cing Siang Hu, Bruce Petersen, Jiajing.
Β2 integrins rather than β1 integrins mediate Alternaria-induced group 2 innate lymphoid cell trafficking to the lung  Maya R. Karta, PhD, Peter S. Rosenthal,
Ablation of miR-146b in mice causes hematopoietic malignancy
SHIP is required for a functional hematopoietic stem cell niche
Genetic disruption of p38α Tyr323 phosphorylation prevents T-cell receptor–mediated p38α activation and impairs interferon-γ production by Ludmila Jirmanova,
Volume 14, Issue 8, Pages (March 2016)
Amotosalen-treated donor T cells have polyclonal antigen-specific long-term function without graft-versus-host disease after allogeneic bone marrow transplantation 
Tracking ex vivo-expanded CD4+CD25+ and CD8+CD25+ regulatory T cells after infusion to prevent donor lymphocyte infusion-induced lethal acute graft-versus-host.
In Situ Activation and Expansion of Host Tregs: A New Approach to Enhance Donor Chimerism and Stable Engraftment in Major Histocompatibility Complex-Matched.
Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines by Yanyan Zhang, Liang He, Dorothée.
Agonistic targeting of TLR1/TLR2 induces p38 MAPK-dependent apoptosis and NFκB-dependent differentiation of AML cells by Mia Eriksson, Pablo Peña-Martínez,
Volume 27, Issue 3, Pages (September 2007)
by Geling Li, Emily Waite, and Julie Wolfson
Homeostasis of dendritic cells in lymphoid organs is controlled by regulation of their precursors via a feedback loop by Kristin Hochweller, Tewfik Miloud,
Volume 15, Issue 5, Pages (November 2001)
CD25 expression distinguishes functionally distinct alloreactive CD4+ CD134+ (OX40+) T-cell subsets in acute graft-versus-host disease  Philip R Streeter,
Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells by Xi Jin, Tingting Qin, Meiling Zhao, Nathanael.
CXCR5 expression accelerates Eμ-Tcl1 leukemogenesis and is indispensable for tumor cell recruitment to lymphoid B-cell follicles. CXCR5 expression accelerates.
Volume 5, Issue 1, Pages (July 2009)
STAT3 Is Required for Flt3L-Dependent Dendritic Cell Differentiation
Volume 2, Issue 1, Pages (January 2008)
Human hematopoietic stem cell maintenance and myeloid cell development in next-generation humanized mouse models by Trisha R. Sippel, Stefan Radtke, Tayla.
by Yue Wei, Hong Zheng, Naran Bao, Shan Jiang, Carlos E
A Function of Fas-Associated Death Domain Protein in Cell Cycle Progression Localized to a Single Amino Acid at Its C-Terminal Region  Zi Chun Hua, Sue.
IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells by Ana Camelo, Guglielmo Rosignoli, Yoichiro.
Major hematopoietic cell populations in NOD mice are not affected by c-Rel deficiency. Major hematopoietic cell populations in NOD mice are not affected.
Volume 23, Issue 4, Pages (October 2005)
Constitutive expression of JAK3M511I and HOXA9 leads to development of both AML and T-ALL in vivo. Constitutive expression of JAK3M511I and HOXA9 leads.
Presentation transcript:

Partial trisomy 21 contributes to T-cell malignancies induced by JAK3-activating mutations in murine models by Paola Rivera-Munoz, Anouchka P. Laurent, Aurelie Siret, Cecile K. Lopez, Cathy Ignacimouttou, Melanie G. Cornejo, Olivia Bawa, Philippe Rameau, Olivier A. Bernard, Philippe Dessen, Gary D. Gilliland, Thomas Mercher, and Sébastien Malinge BloodAdv Volume 2(13):1616-1627 July 10, 2018 © 2018 by The American Society of Hematology

Paola Rivera-Munoz et al. Blood Adv 2018;2:1616-1627 © 2018 by The American Society of Hematology

Generation of the Jak3 knockin model and hematologic disorders. Generation of the Jak3 knockin model and hematologic disorders. (A) Proportion of JAK3 activating mutations in different types of human hematologic malignancies. The frequency of the JAK3A572/573V compared with mutations affecting other residues is shown (data obtained from http://cancer.sanger.ac.uk/cosmic and previously reported studies.9,11,21,22,35,36 (B) Representative western blots assessing the activity of mutant Jak3 and downstream pathways in thymocytes from 6- to 8-week-old Jak3WT/WT, Jak3KI/WT and Jak3KI/KI mice. Representative values of band intensity relative to Jak3WT/WT are indicated. (C) Absolute cell number in the bone marrow (BM), spleen (SP), thymus (Thy), and lymph node (LN) of Jak3WT/WT (WT/WT), Jak3KI/WT (KI/WT), and Jak3KI/KI (KI/KI) mice (5 to 13 mice per group, 6-14 months old). Data represented as the mean ± standard error of the mean (SEM); P values are indicated (Student t test). (D) Paraffin-embedded spleen sections from 10-month-old mice were stained with hematoxylin and eosin (H&E) as well as with anti-CD3, anti-factor VIII (von Willebrand factor [vWF]), and anti-myeloperoxidase (anti-MPO) antibodies (original magnification ×100). (E) Representative fluorescence-activated cell sorting (FACS) plots assessing the proportion of CD3+ cells in the spleen of 10-month-old wild-type (WT) and KI/KI mice. (F) Anti-CD3 immunostaining showing of the skin of 10-month-old WT and KI/KI mice (original magnification ×100). AML, acute myeloid leukemia; B-ALL, B-cell acute lymphoblastic leukemia; CTCL, cutaneous T-cell lymphoma; DS-AMKL, Down syndrome–associated acute megakaryoblastic leukemia; FSC, forward scatter; JMML, juvenile myelomonocytic leukemia; MDS, myelodysplastic syndrome; NKCL, natural killer T-cell lymphoma nasal-type; T-ALL, T-cell acute lymphoblastic leukemia; T-PLL, T-cell prolymphocytic leukemia. Paola Rivera-Munoz et al. Blood Adv 2018;2:1616-1627 © 2018 by The American Society of Hematology

Jak3KI/KI mice develop a CTCL-like CD8+ lymphoproliferative disorder in vivo. Jak3KI/KImice develop a CTCL-like CD8+lymphoproliferative disorder in vivo. (A) Histogram plots presenting the percent of lymphoid cells populations (B220+/IgM+, CD4+/CD8– and CD8+/CD4–) in the bone marrow, spleen, thymus, lymph node, and peripheral blood (PB) (7 to 13 mice per group; 6- to 14-month-old mice). Double-negative (DN) (CD4–/CD8–) and double-positive (DP) (CD4+/CD8+) thymocytes are also depicted. (B) Histogram plots showing the mean ± SEM of p-Stat5; p-Stat3, and p-Erk in spleen cells (CD8+). P values are indicated (Student t test). (C) Evolution of the CD8+ population in PB, BM, SM, Thy, and LN of Jak3KI/KI over time (4 to 8 mice per group). (D) Representative FACS plots describing the TCRα/β+Gr1+ and CD62L/CCR7 phenotype of the CD8+ population in spleen cells of 8-month-old mice. Paola Rivera-Munoz et al. Blood Adv 2018;2:1616-1627 © 2018 by The American Society of Hematology

Trisomy of the DSCR cooperates with Jak3KI/KI to enhance the CTCL-like disorder. Trisomy of the DSCR cooperates with Jak3KI/KIto enhance the CTCL-like disorder. (A) Survival curves comparing Jak3-mutant mice in a euploid vs trisomic (Ts1Rhr) cellular context (4 to 8 mice per group). P values are indicated (log-rank Mantel-Cox test). (B) Histogram plots representing the average weight of spleens in 8- to 10-month-old mice. Data are shown as the mean ± SEM. P values are shown (Student t test). (C) Representative FACS plots of 10-month-old Jak3KI/WT, Jak3KI/KI, Ts1Rhr-Jak3KI/KI, and Ts1Rhr-Jak3KI/WT mice stained for T-cell markers CD4 and CD8 in PB, BM, SP, Thy, and LN cells. (D) Bar graph comparing the percentage of CD8+ cells in PB, BM, SP, Thy, and LN cells of Jak3KI/KI (black) and Ts1Rhr-Jak3KI/KI (blue) mice (4 to 8 mice per group; 4 independent experiments). Data are the mean ± SEM. P values are shown (Student t test). (E) Representative FACS plots assessing the expression of CD62L and CCR7 in the CD8+Gr1+ population of Jak3KI/KI, Ts1Rhr-Jak3KI/KI, and Ts1Rhr mice. Paola Rivera-Munoz et al. Blood Adv 2018;2:1616-1627 © 2018 by The American Society of Hematology

Jak3KI/KI CTCL-like disorder is transplantable and is characterized by heterogeneous cell populations. Jak3KI/KICTCL-like disorder is transplantable and is characterized by heterogeneous cell populations. (A) Kinetics of the percentage of the CD4+ and CD8+ populations in the peripheral blood of sublethally irradiated recipients transplanted with Jak3KI/KI or Ts1Rhr-Jak3KI/KI splenic cells. Data are shown as the mean ± SEM (3 to 4 mice per group). P values are shown (Student t test). (B) Representative FACS plots of the CD4 and CD8 splenic cells gated on CD3+Gr1+ of recipient animals transplanted with Jak3KI/KI and Ts1Rhr-Jak3KI/KI cells. (C) Bar graphs showing the proportion of the different T cell populations in recipient animals (Gated on CD3+Gr1+). Mean ± SEM and P values are indicated (5 mice per group). (D) FACS plot showing the percentage of CD4+Gr1+ and CD8+Gr1+ in the peripheral blood at 20 weeks of recipient animals transplanted with sorted CD4+ or CD8+ donors. (E) Proportion of CD4+ and CD8+ in the peripheral blood of sublethally irradiated recipients transplanted with CD4+ or CD8+ sorted cells (n = 5 to 9 mice per group). The presence of the Jak3KI/KI allele was verified by genotyping CD4+Gr1–, CD4+Gr1+, CD8+Gr1–, and CD8+Gr1+ sorted cell populations from peripheral blood. Paola Rivera-Munoz et al. Blood Adv 2018;2:1616-1627 © 2018 by The American Society of Hematology

Jak3KI/KI T cells are sensitive to the JAK3 inhibitor tofacitinib. Jak3KI/KIT cells are sensitive to the JAK3 inhibitor tofacitinib. (A) Representative western blot showing the efficacy of a 6-hour treatment with tofacitinib on Jak3KI/KI splenocytes. Representative values of band intensity relative to DMSO are indicated. (B) Dose-response curves of tofacitinib treatment over 3 days for KI/KI cell survival in vitro. Data are mean ± SEM. P values are shown (Student t test). (C) Comparison of the sensitivity of CTCL-like Jak3KI/KI, Ts1Rhr-Jak3KI/KI, CD4+ Ts1Rhr-Jak3KI/KI, and T-ALL Ts1Rhr-Jak3KI/KI to tofacitinib treatment. Mean ± SEM from 2 to 5 mice per group (each in triplicates) is indicated. P values are indicated. Paola Rivera-Munoz et al. Blood Adv 2018;2:1616-1627 © 2018 by The American Society of Hematology