Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.

Slides:



Advertisements
Similar presentations
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Advertisements

The zonal architecture of human articular cartilage described by T2 relaxation time in the presence of Gd-DTPA2−  Jatta E. Kurkijärvi, Mikko J. Nissi,
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage  A.-C. Bay-Jensen,
Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical.
PQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage – associations to matrix composition.
Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running  T.J. Mosher, Y. Liu, C.M. Torok 
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
Diffusion of Gd-DTPA2− into articular cartilage
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Indentation diagnostics of cartilage degeneration
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
M. M. Temple, Ph. D. , W. C. Bae, Ph. D. , M. Q. Chen, M. S. , M
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Angiogenesis in two animal models of osteoarthritis
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC  J.E. Kurkijärvi,
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
R. Mahmoodian, J. Leasure, P. Philip, N. Pleshko, F. Capaldi, S
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
B. Kaleem, F. Maier, H. Drissi, D.M. Pierce 
Effect of puerarin on bone formation
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
H. J. Nieminen, T. Ylitalo, S. Kauppinen, E. Hæggström, M. Finnilä, S
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
M. S. Laasanen, Ph. D. , J. Töyräs, Ph. D. , A. Vasara, M. D. , S
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
Nonlinear optical microscopy of articular cartilage
Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration  E. Lammentausta, M.Sc., P. Kiviranta, B.M.,
Osteoarthritis and Cartilage
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development  A.R.
Regionally distinct f-actin networks within articular cartilage
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
S. Zheng, Y. Xia  Osteoarthritis and Cartilage 
Estimation of articular cartilage properties using multivariate analysis of optical coherence tomography signal  P.H. Puhakka, N.C.R. te Moller, I.O.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
The prevalence of and factors related to calcium pyrophosphate dihydrate crystal deposition in the knee joint  K. Ryu, T. Iriuchishima, M. Oshida, Y.
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D.,
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
Correlation between the MR T2 value at 4
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Presentation transcript:

Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M. Hyttinen, M.D., E. Halmesmaki, M.D., H. Ruotsalainen, M.Sc., A. Vasara, M.D., Ph.D., I. Kiviranta, M.D., Ph.D., J.S. Jurvelin, Ph.D., H.J. Helminen, M.D., Ph.D.  Osteoarthritis and Cartilage  Volume 17, Issue 4, Pages 448-455 (April 2009) DOI: 10.1016/j.joca.2008.09.004 Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 A characteristic image of the porcine femoral groove with the sample site on the lateral facet. A cartilage–bone cylinder was taken and processed for polarized light microscopy and FT-IRIS. Osteoarthritis and Cartilage 2009 17, 448-455DOI: (10.1016/j.joca.2008.09.004) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Polarized light microscopy images demonstrating the alterations in the collagen fibril network in young (4-month-old) (A) and more mature (21-month-old) (B) porcine cartilage. Collagen birefringence, local fibril parallelism and fibril orientation in relation to the cartilage surface, determined by quantitative polarized light microscopy, change gradually with growth and tissue maturation. Osteoarthritis and Cartilage 2009 17, 448-455DOI: (10.1016/j.joca.2008.09.004) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Cartilage thickness is presented as group averages (mean±S.D.). The thickness shows a gradual decrease with age. Statistical differences were determined by the non-parametric Kruskall–Wallis test. The contrasts between the different age points were tested with a post hoc test. Statistically significant differences are indicated. Osteoarthritis and Cartilage 2009 17, 448-455DOI: (10.1016/j.joca.2008.09.004) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Development of collagen content (amide I absorption, AU=absorbance unit) (A), collagen fibril orientation (B), parallelism index of collagen (C), and collagen birefringence (D) in articular cartilage of growing pigs. Depthwise profiles from surface to deep zone are normalized according to thickness, i.e., each fraction on the x-axis represents 10% of the cartilage thickness. Mean±S.D. Osteoarthritis and Cartilage 2009 17, 448-455DOI: (10.1016/j.joca.2008.09.004) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Collagen content (amide I absorption, AU=absorbance unit) (A), collagen fibril orientation with respect to cartilage surface (B), parallelism index of collagen (C), and collagen birefringence (D) are presented. Each parameter was calculated across the cartilage depth (from surface to cartilage–bone junction) using a 500μm wide region of interest. An average value was calculated for each row of profiles from the superficial cartilage to the cartilage–bone junction (Mean±S.D). Statistical differences were determined by the non-parametric Kruskall–Wallis test. The contrasts between the different age points were tested with a post hoc test. Statistically significant differences are indicated. Osteoarthritis and Cartilage 2009 17, 448-455DOI: (10.1016/j.joca.2008.09.004) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Cartilage thickness decreased as the growth and maturation of animals proceeded. Therefore, microscopic analyses were also made by taking into account only the first 800μm from the cartilage surface. This was close to the average thickness of the 21-month-old animals. The results show that remodelation is not explained by thinning of the cartilage. All measured parameters showed significant changes during growth and maturation. Values are given as mean±S.D. Explanations for parameters and abbreviations are found in the text for Figs. 4 and 5. Osteoarthritis and Cartilage 2009 17, 448-455DOI: (10.1016/j.joca.2008.09.004) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Comparison of collagen content distribution in articular cartilage of 4-month-old (A, C and E) and 21-month-old pigs (B, D and F). Light microscopic images (A and B) reveal the cell lacunae as dark dots showing the dimensions of the lacunae. The FTIR image obtained using the amide I spectral wavelength indicates the collagen distribution in cartilage (C and D). The distribution of the collagen content reveals differences between the groups. The interterritorial cartilage matrix of mature animals (F) has a higher collagen content than that of the younger animals (E). Lacunae and the territorial matrix appear to contain less collagen than the interterritorial matrix. Osteoarthritis and Cartilage 2009 17, 448-455DOI: (10.1016/j.joca.2008.09.004) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions