Concurrent Sensitivities of an Idealized Deep Convective Storm to Parameterization of Microphysics, Horizontal Grid Resolution, and Environmental Static.

Slides:



Advertisements
Similar presentations
Water Budget of Typhoon Nari (2001) Yang, M.-J.*, S. A. Braun, and D.-S. Chen, 2011: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, ,
Advertisements

Bow Echo Sensitivity to Ambient Moisture and Cold Pool Strength Richard P. James, Paul M. Markowski, and J. Michael Fritsch, 2006: Mon. Wea. Rev., 134,
The Effect of the Terrain on Monsoon Convection in the Himalayan Region Socorro Medina 1, Robert Houze 1, Anil Kumar 2,3 and Dev Niyogi 3 Conference on.
A new approach to parameterize ice-phase cloud microphysics The Predicted Particle Properties (P3) Scheme WWOSC 2014 Montreal, Canada August 17, 2014 Hugh.
GFS Deep and Shallow Cumulus Convection Schemes
HWRF Model Sensitivity to Non-hydrostatic Effects Hurricane Diagnostics and Verification Workshop May 4, 2009 Katherine S. Maclay Colorado State University.
Impact of Graupel Parameterization Schemes on Idealized Bow Echo Simulations Rebecca D. Adams-Selin Adams-Selin, R. D., S. C. van den Heever, and R. D.
GardeGarde Designing unified convection parameterizations: two proposals related to equation sets and entrainment. Jean-Marcel Piriou, Météo-France. GCSS.
The National Environmental Agency of Georgia L. Megrelidze, N. Kutaladze, Kh. Kokosadze NWP Local Area Models’ Failure in Simulation of Eastern Invasion.
Prague'03 / Physics & its interfacing Physics & its interfacing – the AROME case J.-F. Geleyn & L. Gérard I) Generalities II) Challenges & likely problems.
WRF Microphysics Scheme Sensitivity Discussion
19 December ConclusionsResultsMethodologyBackground Chip HelmsSensitivity of CM1 to Initial θ' Magnitude and Radius Examining the Sensitivity of.
Microphysics complexity in squall line simulations. As high-resolution climate models increasingly turn towards an explicit representation of convection,
Water Budget and Precipitation Efficiency of Typhoons Morakot (2009) Ming-Jen Yang 1, Hsiao-Ling Huang 1, and Chung-Hsiung Sui 2 1 National Central University,
Water Budget and Precipitation Efficiency of Typhoon Morakot (2009) Hsiao-Ling Huang 1, Ming-Jen Yang 1, and Chung-Hsiung Sui 2 1 National Central University,
Yanjun Jiao and Colin Jones University of Quebec at Montreal September 20, 2006 The Performance of the Canadian Regional Climate Model in the Pacific Ocean.
Comparison of Evaporation and Cold Pool Development between Single- Moment (SM) and Multi-moment (MM) Bulk Microphysics Schemes In Idealized Simulations.
High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998).
Water Budget and Precipitation Efficiency of Typhoons Ming-Jen Yang 楊明仁 National Central University.
On the Definition of Precipitation Efficiency Sui, C.-H., X. Li, and M.-J. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64,
WRF Version 2: Physics Update Jimy Dudhia NCAR/MMM.
Sensitivity of Squall-Line Rear Inflow to Ice Microphysics and Environmental Humidity Ming-Jen Yang and Robert A. House Jr. Mon. Wea. Rev., 123,
Norman Weather Forecast Office Gabe Garfield 2/23/11.
Influences of Large-Scale Moist Convection on Turbulence in Clear Air (CAT) Stan Trier NCAR, Boulder Outline: 1)Observations and High Resolution Simulations.
ARPS( Advanced Regional Prediction System ) Version Center for Analysis and Prediction of Storms (CAPS), Oklahoma University tridimensional compressible.
Matthew Lagor Remote Sensing Stability Indices and Derived Product Imagery from the GOES Sounder
I NVESTIGATION OF THE IMPACT OF M ICROPHYSICS O PTIONS ON I DEALIZED WRF S UPERCELL Catrin M. Mills Sara T. Strey-Mellema.
Mesoscale Convective Vortices (MCVs) Observed During the Bow-Echo and MCV Experiment (BAMEX) 2003 Part I: Kinematic and Thermodynamic Structure (Davis.
A modeling study of cloud microphysics: Part I: Effects of Hydrometeor Convergence on Precipitation Efficiency. C.-H. Sui and Xiaofan Li.
Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes.
Sensitivity to the Representation of Microphysical Processes in Numerical Simulations during Tropical Storm Formation Penny, A. B., P. A. Harr, and J.
Performance of ALARO0 baseline in pre-operational testing
Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part II: Case Study Comparisons with Observations and Other.
Hugh Morrison & Jason A. Milbrandt JAS (2015), p
WRF model runs of 2 and 3 August
GEORGE H. BRYAN AND HUGH MORRISON
On the role of entrainment at the grey zone scales
Water Budget of Typhoon Nari(2001)
Schumacher, R., S., and J. M. Peters, 2017
Bill Scheftic Atmo 558 May 6th 2008
Sensitivity of WRF microphysics to aerosol concentration
Bodine, D. J., and K. L. Rasmussen, 2017
Sea Breeze Initiated Thunderstorms Relating to Convective Available Potential Energy (CAPE) and Convective Inhibition (CINH) Javier Rosa Department of.
Dawson, D. T. II, M. Xue, J. A. Milbrandt, and A. Shapiro, 2015
Ming-Jen Yang and Robert A. House Jr. Mon. Wea. Rev., 123,
Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Speaker: Huan Chen Professor:
Scott A. Braun, 2002: Mon. Wea. Rev.,130,
Kurowski, M .J., K. Suselj, W. W. Grabowski, and J. Teixeira, 2018
Sensitivity to WRF microphysics/ Cu parametrisation
Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget. J. Atmos. Sci., 63, Gamache, J. F., R. A. Houze.
Xu, H., and X. Li, 2017 J. Geophys. Res. Atmos., 122, 6004–6024
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Li, Z., P. Zuidema, P. Zhu, and H. Morrison, 2015
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
The Impact of Moist Singular Vectors and Horizontal Resolution on Short-Range Limited-Area Ensemble Forecasts for Extreme Weather Events A. Walser1) M.
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
The Flux Model of Orographic Rain
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Presentation transcript:

Concurrent Sensitivities of an Idealized Deep Convective Storm to Parameterization of Microphysics, Horizontal Grid Resolution, and Environmental Static Stability Hugh Morrison, Annareli Morales, and Cecille Villanueva-Birriel, 2015: Concurrent Sensitivities of an Idealized Deep Convective Storm to Parameterization of Microphysics, Horizontal Grid Resolution, and Environmental Static Stability. Mon. Wea. Rev., 143, 2082–2104.

Experiment Design Advanced Research WRF version 3.3.1 Horizontal domain size: 80 km x 80 km 75 vertical levels Parameterization of Microphysics Horizontal Grid Resolution Environmental Static Stability WSM6 2 km High CAPE Thompson (THO) 1 km Moderate CAPE Morrison (MORR) 0.5 km Low CAPE 0.25 km 0.125 km

Experiment Design Low CAPE (1543 JKg-1) Moderate CAPE (2715 JKg-1) High CAPE (4229 JKg-1)

Results – Overview Δx=0.125 km Δx=2 km

Results – Overview

Bulk Water Budget & Precipitation Efficiency 𝑃𝑅𝐸= 𝐶𝑂𝑁𝐷 − 𝐸𝑉𝐴𝑃 −𝑅𝐸𝑆 𝑃𝐸= 𝑃𝑅𝐸 𝐶𝑂𝑁𝐷 =1− 𝐸𝑉𝐴𝑃 𝐶𝑂𝑁𝐷 − 𝑅𝐸𝑆 𝐶𝑂𝑁𝐷

𝑃𝑅𝐸= 𝐶𝑂𝑁𝐷 − 𝐸𝑉𝐴𝑃 −𝑅𝐸𝑆

𝑃𝐸= 𝑃𝑅𝐸 𝐶𝑂𝑁𝐷 =1− 𝐸𝑉𝐴𝑃 𝐶𝑂𝑁𝐷 − 𝑅𝐸𝑆 𝐶𝑂𝑁𝐷 𝑃𝑅𝐸= 𝐶𝑂𝑁𝐷 − 𝐸𝑉𝐴𝑃 −𝑅𝐸𝑆

Condensation rate & updraft mass flux [Mf] Vertically integrated convective updraft mass flux PRE COND [Mf] Fc

Cold pools & convection organization Fc Cold pool area

𝑁 𝑟 𝐷 = 𝑁 0,𝑟 exp⁡(− Λ 𝑟 𝐷) Λ 𝑟 = ( 𝜋 𝜌 𝑤 𝑁 0,𝑟 𝜌 𝑎 𝑄 𝑟 ) 0.25 = ( 𝜋 𝜌 𝑤 𝜌 𝑎 𝑁 𝑇,𝑟 𝑄 𝑟 ) 0.33 𝑁 𝑇,𝑟 = 0 ∞ 𝑁 𝑟 𝐷 𝑑𝐷= 𝑁 0,𝑟 Λ 𝑟

Microphysics EVAP / Qg Cold pool Fc [Mf] COND PRE Conclusion