Interpreting: MDS, DR, SVM Factor Analysis

Slides:



Advertisements
Similar presentations
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 10b, April 10, 2015 Labs: Cross Validation, RandomForest, Multi- Dimensional Scaling, Dimension Reduction,
Advertisements

Bio277 Lab 2: Clustering and Classification of Microarray Data Jess Mar Department of Biostatistics Quackenbush Lab DFCI
Predictive Automatic Relevance Determination by Expectation Propagation Yuan (Alan) Qi Thomas P. Minka Rosalind W. Picard Zoubin Ghahramani.
SVM Lab material borrowed from tutorial by David Meyer FH Technikum Wien, Austria see:
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 10a, April 1, 2014 Support Vector Machines.
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 10b, April 4, 2014 Lab: More on Support Vector Machines, Trees, and your projects.
Applying Statistical Machine Learning to Retinal Electrophysiology Matt Boardman January, 2006 Faculty of Computer Science.
Lecture 27: Recognition Basics CS4670/5670: Computer Vision Kavita Bala Slides from Andrej Karpathy and Fei-Fei Li
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 11a, April 7, 2014 Support Vector Machines, Decision Trees, Cross- validation.
JBR1 Support Vector Machines Classification Venables & Ripley Section 12.5 CSU Hayward Statistics 6601 Joseph Rickert & Timothy McKusick December 1, 2004.
Concept learning, Regression Adapted from slides from Alpaydin’s book and slides by Professor Doina Precup, Mcgill University.
WEKA Machine Learning Toolbox. You can install Weka on your computer from
Guest lecture: Feature Selection Alan Qi Dec 2, 2004.
SVM Lab material borrowed from tutorial by David Meyer FH Technikum Wien, Austria see:
Chapter 6. Classification and Prediction Classification by decision tree induction Bayesian classification Rule-based classification Classification by.
MACHINE LEARNING 3. Supervised Learning. Learning a Class from Examples Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
Oliver Schulte Machine Learning 726 Decision Tree Classifiers.
Principal Components Analysis ( PCA)
Data Analysis with R. Many data mining methods are also supported in R core package or in R modules –Kmeans clustering: Kmeans() –Decision tree: rpart()
1 Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 7a, March 8, 2016 Decision trees, cross-validation.
1 Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 11a, April 12, 2016 Interpreting: MDS, DR, SVM Factor Analysis; and Boosting.
Predictive Automatic Relevance Determination by Expectation Propagation Y. Qi T.P. Minka R.W. Picard Z. Ghahramani.
1 C.A.L. Bailer-Jones. Machine Learning. Model selection and combination Machine learning, pattern recognition and statistical data modelling Lecture 10.
Add More Zing to your Dashboards – Creating Zing Plot Gadgets
Zhenshan, Wen SVM Implementation Zhenshan, Wen
CS240A Final Project 2.
Predicting E. Coli Promoters Using SVM
Classification, Clustering and Bayes…
Alan Qi Thomas P. Minka Rosalind W. Picard Zoubin Ghahramani
Interpreting: MDS, DR, SVM Factor Analysis
Basic machine learning background with Python scikit-learn
Overview of Supervised Learning
Labs: Dimension Reduction, Factor Analysis
Labs: Dimension Reduction, Factor Analysis
Labs: Dimension Reduction, Multi-dimensional Scaling, SVM
Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 9b, April 1, 2016
A brief introduction to neural network
Machine Learning Week 1.
INTRODUCTION TO SUPPORT VECTOR MACHINES
PEBL: Web Page Classification without Negative Examples
Group 1 Lab 2 exercises and Assignment 2
Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600
Balance Scale Data Set This data set was generated to model psychological experimental results. Each example is classified as having the balance scale.
Labs: Dimension Reduction, Multi-dimensional Scaling, SVM
Interpreting: MDS, DR, SVM Factor Analysis
Implementing AdaBoost
Classification, Clustering and Bayes…
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
An update on scikit-learn
Reasoning in Psychology Using Statistics
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Labs: Trees, Dimension Reduction, Multi-dimensional Scaling, SVM
Support Vector Machine _ 2 (SVM)
Cross-validation Brenda Thomson/ Peter Fox Data Analytics
Psych 231: Research Methods in Psychology
Comparison of the csEN algorithm to existing predictive methods and model reduction. Comparison of the csEN algorithm to existing predictive methods and.
Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 10b, April 8, 2016
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Fast Sequences of Non-spatial State Representations in Humans
Classification, Clustering and Bayes…
Local Regression, LDA, and Mixed Model Lab
INTRODUCTION TO Machine Learning
Group 1 Lab 2 exercises and Assignment 2
INTRODUCTION TO Machine Learning 3rd Edition
Advisor: Dr.vahidipour Zahra salimian Shaghayegh jalali Dec 2017
An introduction to neural network and machine learning
Machine Learning for Cyber
Machine Learning for Cyber
Presentation transcript:

Interpreting: MDS, DR, SVM Factor Analysis Peter Fox Data Analytics ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960 Group 3 Module 10, November 6, 2018

MDS lab3_mds1.R lab3_mds2.R lab3_mds3.R http://www.statmethods.net/advstats/mds.html http://gastonsanchez.com/blog/how-to/2013/01/23/MDS-in-R.html

Eurodist

You worked on these… lab3_svm1.R –> lab3_svm11.R lab3_svm_rpart1.R Karatzoglou et al. 2006 - http://aquarius.tw.rpi.edu/html/DA/v15i09.pdf Who worked on this starting from page 9 (bottom)?

Ozone > library(e1071) > library(rpart) > data(Ozone, package=“mlbench”) > # http://math.furman.edu/~dcs/courses/math47/R/library/mlbench/html/Ozone.html # for field codes > ## split data into a train and test set > index <- 1:nrow(Ozone) > testindex <- sample(index, trunc(length(index)/3)) > testset <- na.omit(Ozone[testindex,-3]) > trainset <- na.omit(Ozone[-testindex,-3]) > svm.model <- svm(V4 ~ ., data = trainset, type=“C-classification”,cost = 1000, gamma = 0.0001) > svm.pred <- predict(svm.model, testset[,-3]) > crossprod(svm.pred - testset[,3]) / length(testindex) See: http://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf

Glass library(e1071) library(rpart) data(Glass, package="mlbench") index <- 1:nrow(Glass) testindex <- sample(index, trunc(length(index)/3)) testset <- Glass[testindex,] trainset <- Glass[-testindex,] svm.model <- svm(Type ~ ., data = trainset, cost = 100, gamma = 1) svm.pred <- predict(svm.model, testset[,-10])

> table(pred = svm.pred, true = testset[,10]) true pred 1 2 3 5 6 7 1 12 9 1 0 0 0 2 6 19 6 5 2 2 3 1 0 2 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 1 0 7 0 1 0 0 0 4

Example lab1_svm1.R n <- 150 # number of data points p <- 2 # dimension sigma <- 1 # variance of the distribution meanpos <- 0 # centre of the distribution of positive examples meanneg <- 3 # centre of the distribution of negative examples npos <- round(n/2) # number of positive examples nneg <- n-npos # number of negative examples # Generate the positive and negative examples xpos <- matrix(rnorm(npos*p,mean=meanpos,sd=sigma),npos,p) xneg <- matrix(rnorm(nneg*p,mean=meanneg,sd=sigma),npos,p) x <- rbind(xpos,xneg) # Generate the labels y <- matrix(c(rep(1,npos),rep(-1,nneg))) # Visualize the data plot(x,col=ifelse(y>0,1,2)) legend("topleft",c('Positive','Negative'),col=seq(2),pch=1,text.col=seq(2))

Example 1

Train/ test ntrain <- round(n*0.8) # number of training examples tindex <- sample(n,ntrain) # indices of training samples xtrain <- x[tindex,] xtest <- x[-tindex,] ytrain <- y[tindex] ytest <- y[-tindex] istrain=rep(0,n) istrain[tindex]=1 # Visualize plot(x,col=ifelse(y>0,1,2),pch=ifelse(istrain==1,1,2)) legend("topleft",c('Positive Train','Positive Test','Negative Train','Negative Test'),col=c(1,1,2,2), pch=c(1,2,1,2), text.col=c(1,1,2,2))

Comparison of test classifier

Example ctd svp <- ksvm(xtrain,ytrain,type="C-svc", kernel='vanilladot', C=100,scaled=c()) # General summary svp # Attributes that you can access attributes(svp) # did you look? # For example, the support vectors alpha(svp) alphaindex(svp) b(svp) # remember b? # Use the built-in function to pretty-plot the classifier plot(svp,data=xtrain) > # For example, the support vectors > alpha(svp) [[1]] [1] 71.05875 28.94125 100.00000 > alphaindex(svp) [1] 10 74 93 > b(svp) [1] -17.3651

SVM for iris

SVM for Swiss

e.g. Probabilities… library(kernlab) data(promotergene) ## create test and training set ind <- sample(1:dim(promotergene)[1],20) genetrain <- promotergene[-ind, ] genetest <- promotergene[ind, ] ## train a support vector machine gene <- ksvm(Class~.,data=genetrain,kernel="rbfdot",\ kpar=list(sigma=0.015),C=70,cross=4,prob.model=TRUE) ## predict gene type probabilities on the test set genetype <- predict(gene,genetest,type="probabilities")

Result > genetype + - [1,] 0.205576217 0.794423783 [2,] 0.150094660 0.849905340 [3,] 0.262062226 0.737937774 [4,] 0.939660586 0.060339414 [5,] 0.003164823 0.996835177 [6,] 0.502406898 0.497593102 [7,] 0.812503448 0.187496552 [8,] 0.996382257 0.003617743 [9,] 0.265187582 0.734812418 [10,] 0.998832291 0.001167709 [11,] 0.576491204 0.423508796 [12,] 0.973798660 0.026201340 [13,] 0.098598411 0.901401589 [14,] 0.900670101 0.099329899 [15,] 0.012571774 0.987428226 [16,] 0.977704079 0.022295921 [17,] 0.137304637 0.862695363 [18,] 0.972861575 0.027138425 [19,] 0.224470227 0.775529773 [20,] 0.004691973 0.995308027

These example_exploratoryFactorAnalysis.R on dataset_exploratoryFactorAnalysis.csv (on website) http://rtutorialseries.blogspot.com/2011/10/r-tutorial-series-exploratory-factor.html (this was the example skipped over in the lecture) lab2_fa{1,2,4,5}.R