Mackenzie R. Wehner, Katherine A

Slides:



Advertisements
Similar presentations
2015 Alzheimer's disease facts and figures Alzheimer's & Dementia: The Journal of the Alzheimer's Association Volume 11, Issue 3, Pages (March.
Advertisements

How surgeons can find information online? Martin Hewitt International Journal of Surgery Volume 5, Issue 6, Pages (December 2007) DOI: /j.ijsu
All-Cause and Cause-Specific Mortality in Patients with Psoriasis in Taiwan: A Nationwide Population-Based Study  Meng-Sui Lee, Yi-Chun Yeh, Yun-Ting.
Jakub Tolar, Johann W. Bauer, Daniel H. Kaplan, Sancy A
The Molecular Revolution in Cutaneous Biology: The Era of Global Transcriptional Analysis  Andrew Johnston, Mrinal K. Sarkar, Antonia Vrana, Lam C. Tsoi,
Morbidity and Mortality of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in United States Adults  Derek Y. Hsu, Joaquin Brieva, Nanette B. Silverberg,
Jack L. Arbiser, Michael Y. Bonner 
Jay-Hyun Jo, Elizabeth A. Kennedy, Heidi H. Kong 
Expanding Our Understanding of Human Skin Aging
Skin-Derived Vitamin D3 Protects against Basal Cell Carcinoma
Jordan M. Thompson, Vitali E. Fioletov, Loraine D. Marrett, Cheryl F
Survival of Patients with Cutaneous Squamous Cell Carcinoma: Results of a Prospective Cohort Study  Thomas K. Eigentler, Ulrike Leiter, Hans-Martin Häfner,
PHIPing Out: A Genetic Basis for Tumor Ulceration
Research Techniques Made Simple: Workflow for Searching Databases to Reduce Evidence Selection Bias in Systematic Reviews  Laurence Le Cleach, Elizabeth.
Clinical Snippets Journal of Investigative Dermatology
Luigi Naldi  Journal of Investigative Dermatology 
Outcomes and Risk Factors in Patients with Multiple Primary Melanomas
The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031  David C.
Kavitha K. Reddy  Journal of Investigative Dermatology 
Cells to Surgery Quiz: March 2016
Databases for Clinical Research
Joanne E. Sordillo, Peter Kraft, Ann Chen Wu, Maryam M. Asgari 
Clinical Snippets Journal of Investigative Dermatology
Ten-Year Survival after Multiple Invasive Melanomas Is Worse than after a Single Melanoma: a Population-Based Study  Danny R. Youlden, Peter D. Baade,
Research Techniques Made Simple: Cost-Effectiveness Analysis
Circulating Tumor Cells and Melanoma Progression
Photosensitizing Agents and the Risk of Non-Melanoma Skin Cancer: A Population- Based Case–Control Study  Zaineb H. Makhzoumi, Sarah T. Arron  Journal.
Research Techniques Made Simple: CAR T-Cell Therapy
Multivariable Analysis
Irwin Freedberg, Odysseus for Our Generation
Tamar Nijsten  Journal of Investigative Dermatology 
The Molecular Revolution in Cutaneous Biology: The Era of Global Transcriptional Analysis  Andrew Johnston, Mrinal K. Sarkar, Antonia Vrana, Lam C. Tsoi,
More Than Many: How to Manage the Most Frequent Cancer?
Alice Pentland  Journal of Investigative Dermatology 
Clinical Snippets Journal of Investigative Dermatology
Minutes of the Board of Directors Meeting
Journal of Investigative Dermatology
Cancer Stem Cells in Squamous Cell Carcinoma
David A. Barzilai, Mendel E. Singer 
KIT in Melanoma: Many Shades of Gray
Clinical Snippets Journal of Investigative Dermatology
Sigrun A.J. Schmidt, Serigne Lo, Loes M. Hollestein 
Research Techniques Made Simple: Itch Measurement in Clinical Trials
Journal of Investigative Dermatology
Journal of Investigative Dermatology
Journal of Investigative Dermatology 
Research Techniques Made Simple: Bioinformatics for Genome-Scale Biology  Amy C. Foulkes, David S. Watson, Christopher E.M. Griffiths, Richard B. Warren,
Michael C. Velarde  Journal of Investigative Dermatology 
Society for Investigative Dermatology 2010 Meeting Minutes
Journal of Investigative Dermatology
Democratizing the Clinical Trials Agenda in Dermatology
Erratum Journal of Investigative Dermatology
The Viral Etiology of Skin Cancer
Research Snippets Journal of Investigative Dermatology
BJD Editor’s Choice Journal of Investigative Dermatology
Metabolic Vulnerability in Melanoma: A ME2 (Me Too) Story
Research Snippets from the British Journal of Dermatology
Cells to Surgery Quiz: February 2019
Journal of Investigative Dermatology
Journal of Investigative Dermatology
Conceptual Issues in Measuring the Burden of Skin Diseases
Irwin Freedberg: The Early Years at Harvard
Hot on the Trail of Genes that Shape Our Fingerprints
Journal of Investigative Dermatology
Activation of B-raf in Non-Malignant Nevi Predicts a Novel Tumor Suppressor Gene in Melanoma (MAP Kinase Phosphatase)  Jack L. Arbiser  Journal of Investigative.
Research Techniques Made Simple: Profiling the Skin Microbiota
Journal of Investigative Dermatology
Kevan G. Lewis, Martin A. Weinstock 
Innate Immunity Stimulates Permeability Barrier Homeostasis
Michelle R. Roberts, Sepideh Ashrafzadeh, Maryam M. Asgari 
Presentation transcript:

Research Techniques Made Simple: An Introduction to Use and Analysis of Big Data in Dermatology  Mackenzie R. Wehner, Katherine A. Levandoski, Martin Kulldorff, Maryam M. Asgari  Journal of Investigative Dermatology  Volume 137, Issue 8, Pages e153-e158 (August 2017) DOI: 10.1016/j.jid.2017.04.019 Copyright © 2017 The Authors Terms and Conditions

Figure 1 The 3 Vs of big data. The 3 Vs of big data are volume (amount of data), velocity (speed at which data is generated), and variety (number of types of data), all of which have been growing rapidly. After “The 3Vs That Define Big Data,” Diya Soubra, Data Science Central, http://www.datasciencecentral.com/forum/topics/the-3vs-that-define-big-data. GPS, global positioning system. Journal of Investigative Dermatology 2017 137, e153-e158DOI: (10.1016/j.jid.2017.04.019) Copyright © 2017 The Authors Terms and Conditions

Figure 2 Logarithmic scale depicting volume of big data. The relative scale of different datasets is depicted. There is no predefined threshold for volume that defines big data, but in general, anything one petabyte or greater is considered big data. Journal of Investigative Dermatology 2017 137, e153-e158DOI: (10.1016/j.jid.2017.04.019) Copyright © 2017 The Authors Terms and Conditions

Figure 3 Decision-tree learning to predict melanoma mortality (hypothetical). Hypothetical example illustrating the utility of decision-tree learning for melanoma mortality prediction showing “leaves” (independent variables) such as tumor thickness, ulceration, and tumor location, and probability of survival (outcome). Journal of Investigative Dermatology 2017 137, e153-e158DOI: (10.1016/j.jid.2017.04.019) Copyright © 2017 The Authors Terms and Conditions