S. Kauppinen, S. S. Karhula, J. Thevenot, T. Ylitalo, L. Rieppo, I

Slides:



Advertisements
Similar presentations
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
Advertisements

Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Association between radiography-based subchondral bone structure and MRI-based cartilage composition in postmenopausal women with mild osteoarthritis 
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis  D. Bobinac, M. Marinovic, E.
T. Maerz, M. D. Newton, K. Kristof, O. Motovylyak, J. S. Fischgrund, D
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Histopathological subgroups in knee osteoarthritis
L.N. Nwosu, P.I. Mapp, V. Chapman, D.A. Walsh 
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Cartilage MRI T2∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease  C.-Y. Wang, Y.-J. Peng,
Osteoarthritis and Cartilage
Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis  M. Lacourt, C. Gao, A. Li, C. Girard,
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Osteoarthritis-like changes in the heterozygous sedc mouse associated with the HtrA1– Ddr2–Mmp-13 degradative pathway: a new model of osteoarthritis  D.W.
Delivery of agents into articular cartilage by laser-ultrasound
Quantitative assessment of articular cartilage morphology via EPIC-μCT
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight  I.G. Otterness, Ph.D., F. Eckstein, M.D. 
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
M. Finnilä, O-M. Aho, V. Tiitu, J. Thevenot, J. Rautiainen, M
Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits  H. Chen, A. Chevrier,
Correlation of non-destructive electromechanical probe (Arthro-BST) assessment with histological scores and mechanical properties in human tibial plateau 
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
3D histopathological grading of osteochondral tissue using contrast-enhanced micro- computed tomography  H.J. Nieminen, H.K. Gahunia, K.P.H. Pritzker,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading  E.B. Dam, Ph.D., J. Folkesson, M.Sc.,
The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow  A. Shibakawa, M.D., Ph.D., K. Yudoh,
Osteoarthritis and Cartilage
Effects of a metalloproteinase inhibitor on osteochondral angiogenesis, chondropathy and pain behavior in a rat model of osteoarthritis  P.I. Mapp, D.A.
Surface characterization of degenerated articular cartilage surface by contrast- enhanced micro-computed tomography  T.J. Ylitalo, M. Finnilä, S. Karhula,
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W.
Osteoarthritis and Cartilage
Subchondral bone turnover, but not bone volume, is increased in early stage osteoarthritic lesions in the human hip joint  R. Klose-Jensen, L.B. Hartlev,
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Contrast-enhanced computed tomography imaging using a cationic contrast agent correlates with the equilibrium modulus of mouse tibial plateau cartilage 
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
Volumetric Analysis of Tidemark and Vessel Perforations through Calcified Cartilage from Micro-computed Tomography: Associations with Osteoarthritis Stage 
MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up 
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
3D-histopathological grading of articular cartilage using contrast-enhanced high- resolution micro-CT  H. Gahunia, S. Karhula, T. Ylitalo, E. Hæggström,
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
In vitro method for 3D morphometry of human articular cartilage chondrons based on micro-computed tomography  I. Kestilä, J. Thevenot, M.A. Finnilä, S.S.
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation  L.G.E. Cox, C.C. van Donkelaar,
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Presentation transcript:

3D morphometric analysis of calcified cartilage properties using micro-computed tomography  S. Kauppinen, S.S. Karhula, J. Thevenot, T. Ylitalo, L. Rieppo, I. Kestilä, M. Haapea, I. Hadjab, M.A. Finnilä, E. Quenneville, M. Garon, H.K. Gahunia, K.P.H. Pritzker, M.D. Buschmann, S. Saarakkala, H.J. Nieminen  Osteoarthritis and Cartilage  Volume 27, Issue 1, Pages 172-180 (January 2019) DOI: 10.1016/j.joca.2018.09.009 Copyright © 2018 The Authors Terms and Conditions

Fig. 1 Preparation and imaging protocol. Osteochondral plugs (Ø = 4 mm) were extracted from the weight bearing area of lateral tibial plateau. Samples were fixed in 10% buffered formalin for 5 days and imaged with μCT after a minimum of 4 days of fixation in fixation media. Subsequently, samples were decalcified in EDTA, embedded into paraffin blocks, sectioned into 5 μm thick slices for Masson's trichrome staining and 3 μm slices for Safranin O staining. Osteoarthritis and Cartilage 2019 27, 172-180DOI: (10.1016/j.joca.2018.09.009) Copyright © 2018 The Authors Terms and Conditions

Fig. 2 Histological analyses. A) A Masson trichrome stain from which CC and SCB are manually segmented. B) CC and SCB are separated. C) Mean thicknesses (CC.Tmean and SCB.Tmean) are calculated by measuring the area of the mask (black) and dividing it by the masks feret diameter (red line). D) Masks from C are used to calculate local thicknesses (CC.Tlocal and SCB.Tlocal). All histological analyses were done on three adjacent slices with a minimum distance of 30 μm between each slice. E) TMR is calculated by measuring the shortest route of 600 segmented 2D surfaces through the stack. A least squares regression line is fitted for each 2D surface and is used as the reference length for each surface. Each samples TMR is the average of these 600 slices. Channel length is removed from each slice if channels are present. Only the surface of the CC is analyzed and not where the channels perforate to the surface. F) Channels that perforate to the surface (red) are used for channel analyses: projection image of the channels from (E). Osteoarthritis and Cartilage 2019 27, 172-180DOI: (10.1016/j.joca.2018.09.009) Copyright © 2018 The Authors Terms and Conditions

Fig. 3 Box plots of parameters defining surface morphology vs three OARSI groups: healthy (OARSI grade = 0, n = 5), early OA (OARSI grade = 1–2, n = 7) and advanced OA (OARSI grade > 2, n = 3). A) HI, B) ADP, C) EP, D) TMR. Black stars indicate statistical significance (*P < 0.05 and **P < 0.01) between groups. Osteoarthritis and Cartilage 2019 27, 172-180DOI: (10.1016/j.joca.2018.09.009) Copyright © 2018 The Authors Terms and Conditions

Fig. 4 A panel of three different samples from the study. Healthy, early OA and advanced OA. A) Binarized calcified cartilage surfaces of three volumes used in the analyses. The locations where channels surface can be seen in red. B) volumetric visualization of the channels within the calcified content are seen in red. A brighter shade of red shows where the deep non calcified cartilage is in contact with the medullar area under the subchondral plate. C) corresponding parameters from these samples are shown next to each sample. D) Safranin-O histological staining of the sample. A decrease in red color intensity indicates a proteoglycan loss. E) Masson trichrome histological stain. F) Closeups from the tidemark region from white boxes in (E). Black arrows indicate the location of the tidemark and white arrows show where possible channels are in these sections. Osteoarthritis and Cartilage 2019 27, 172-180DOI: (10.1016/j.joca.2018.09.009) Copyright © 2018 The Authors Terms and Conditions