Stack Ack Performance Estimation

Slides:



Advertisements
Similar presentations
11ac: 5G WiFi The trigger for 5GHz everywhere Led by Apple and other consumer specialists – In-home device sync, video, backup, etc – “Gigabit WiFi” on.
Advertisements

802.11n MAC layer simulation Submitted by: Niv Tokman Aya Mire Oren Gur-Arie.
Doc.:IEEE /1079r0 Submission Sept. 13, 2010 Yong Liu, MarvellSlide 1 Max Frame Sizes Date: Authors:
How do you simplify? Simple Complicated.
Wireless Mobile Communication and Transmission Lab. Chapter 8 Application of Error Control Coding.
Doc.: n-proposal-statistical-channel-error-model.ppt Submission Jan 2004 UCLA - STMicroelectronics, Inc.Slide 1 Proposal for Statistical.
Delay Bound Rich Image Delivery over WLANs Shira S. Krishnan Georgia Tech, ECE Multimedia Communications Laboratory.
Fast Resilient Jumbo Frames in Wireless LANs Apurv Bhartia University of Texas at Austin Joint work with Anand Padmanabha Iyer, Gaurav.
DCN: Submission July 2015 Itaru Maekawa (JRC) Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [JRC Proposal.
Doc.: IEEE /0112r0 Zhanji Wu, et. Al. January 2013 Submission Joint Coding and Modulation Diversity for the Next Generation WLAN Date:
Improvements in throughput in n The design goal of the n is “HT” for High Throughput. The throughput is high indeed: up to 600 Mbps in raw.
Submission doc.: IEEE 11-13/1349r0 November 2013 Katsuo Yunoki, KDDI R&D Labs.Slide 1 Access Control Enhancement Date: Authors:
Doc.: IEEE /072 Submission May 2000 Mark Webster and Karen Halford, Intersil Corporation Slide 1 Market Acceptability Throughput Issues for HRb.
PAPR Reduction Method for OFDM Systems without Side Information
DCN: Submission November, 2015 Itaru Maekawa, et al. Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title:
Doc.: IEEE Submission What is the purpose of the randomly changing DevID?, Slide 1.
Doc.: IEEE /0400r0 SubmissionZander Lei, I2R SingaporeSlide 1 ACK Transmission Date: Authors: March 2012.
Proposal for Statistical Channel Error Model
Upcoming new Wi-Fi technologies
MAC Simulator Calibration Results
Submission Title: [Resolution on comment #20,22 and 30]
MAC Calibration results
An Overview of ax Greg Kamer – Consulting Systems Engineer.
EDMG BlockAck Retransmission
ISM Band Radio Radio Protocols and Topology
Link Metric for High Throughput Mesh
September 2011 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: A Reed-Solomon Erasure Correction Based.
doc.: IEEE <doc#>
doc.: IEEE <doc#>
6-10GHz Rate-Range and Link Budget
Overheads in Data Stream Over WLAN
Link Metric for High Throughput Mesh
RIFS mode in 11ac Date: Authors: Joshua Zhao, Atheros.
High Throughput LDPC Decoders Using a Multiple Split-Row Method
doc.: IEEE <doc#>
September 2016 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Comment resolution for i-024 and i-151.
Backwards compatibility
Enhanced MAC proposal for high throughput.
MAC Calibration Results
MAC Calibration Results
September 2011 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: A Reed-Solomon Erasure Correction Based.
<January 2002> doc.: IEEE <02/139r0> March, 2008
November 2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Issues on Superframe Size for Uncompressed.
September 2011 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: A Reed-Solomon Erasure Correction Based.
Fragmentation with A-MPDU
RIFS mode in 11ac Date: Authors: Joshua Zhao, Atheros.
Submission Title: [Resolution on comment #20,22 and 30]
Wireless Mesh Networks
<January 2002> doc.: IEEE <02/139r0> March, 2008
MAC Partial Proposal for TGn
MAC Partial Proposal for TGn
Network Systems and Throughput Preservation
Packet Error Probability Prediction for MAC Simulation
Is the MAC sufficient for wireless high speed mesh LANs?
<January 2002> doc.: IEEE <02/139r0> November, 2007
DL MU MIMO Error Handling and Simulation Results
Joint Coding and Modulation Diversity for ac
May 2004 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Delayed Negative Acknowledgement (Dly-NACK)]
UL MU Random Access Analysis
CSI Feedback Scheme using DCT for Explicit Beamforming
Strawmodel ac Specification Framework
doc.: IEEE <doc#>
July 2004 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Modified Delayed (Dly) Acknowledgement for.
40 MHz Vs 20 MHz for video Date: Authors: July 2009
November, 2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Superframe Sizing Procedure for Uncompressed.
HARQ Feasibility for EHT
Comparisons of HARQ transmission schemes for 11be
Consideration on HARQ Unit
MAC Partial Proposal for TGn
Analysis on IEEE n MAC Efficiency
Presentation transcript:

Stack Ack Performance Estimation Submission for TG3e IEEE802.15.3e Itaru Maekawa (JRC: Japan Radio Co.,Ltd.)

- Key Concept of HRCP MAC - #2 - “Simple” Stack ACK - Key Concept of HRCP MAC - #2 - Block ACK Effective way to save & share bandwidth among multiple devices, especially under high error or collision environments, however….This method has the following disadvantages: Higher complexity Larger buffer memory Larger potential latency Stack ACK Practical way for HRCP, because … Bandwidth saving is not required, thanks to good BER environment Lower Complexity , simple hardware requirements “Small” benefit versus cost (complexity) for use cases of HRCP “Stacked Coin” FIFO Buffer

Time Domain MAC Behavior SIFS SIFS Sub-F#N+4 Sub-F#N+3 Sub-F#N+2 Sub-F#N+1 ACK#M Dev.A Dev.B Sub-F#M+4 Sub-F#M+3 Sub-F#M+2 Sub-F#M+1 ACK#N+4 Time #1 Data Error Or Buffer full SIFS Sub-F#N+8 Sub-F#N+7 Sub-F#N+6 Sub-F#N+5 ACK#M+4 Dev.A Dev.B Sub-F#M+8 Sub-F#M+7 Sub-F#M+6 Sub-F#M+5 ACK#N+6 Time #2 SIFS SIFS Header Error ACK#M+8 Sub-F#N+10 Sub-F#N+9 Sub-F#N+8 Sub-F#N+7 ACK#M+8 Dev.A Dev.B IIFS SIFS Sub-F#M+10 Sub-F#M+9 ACK#N+6 ACK#N+6 RIFS ACK#N+6 RIFS Time #3 SIFS SIFS SIFS ACK#M+10 Sub-F#N+12 Sub-F#N+11 Sub-F#N+10 Sub-F#N+9 Sub-F#N+8 Sub-F#N+7 ACK#M+10 Dev.A Dev.B ACK#N+12 Time #4 IIFS IIFS IIFS Sync.lost ACK#M+12 ACK#M+12 ACK#M+12 ACK#M+12 Dev.A Dev.B ACK#N+12 Sub-F#M+14 Sub-F#M+13 Sub-F#M+12 Sub-F#M+11 ACK#N+12 RIFS Time #5

Stack Ack: Performance Estimation Model MPDU#N FCS Subframe#N MAC Subheader#N HCS SIFS SIFS SIFS Subframe#N+31 PHY Header HCS MAC Header Subframe#N+17 Subframe#N+16 Subframe#N+15 PHY Header HCS MAC Header Subframe#N+1 Subframe#N Tperiod PHY Header HCS MAC Header PHY Header HCS MAC Header Time Parameters : Example unit PHY Preamble Tpr 2 usec PHY-header+MAC-header +HCS Lhd 132 bit 1760M BPSK, 1/2 ECC. Rhead 0.88 Gbps Thd 2.15 16QAM wo pilot, 14/15 LDPC Rphy 6.57 Tsifs mpdu Length Lmpd 4 kB Sub-Header+HCS+FCS Lsh 11 B Aggregation Number N 16 Tperiod 86.44429 FER=1-(1-BER)Lmpd・N :(BER:bit error rate) Simplified Estimation Model When Frame Error is occurred with probability of FER, 50% of Sub-Frames (Average) are retransmitted. MAC Throughput (MACtp) vs FER is calculated as below.

Block-Ack :Performance Estimation Model MPDU#N FCS Subframe#N MAC Subheader#N HCS SIFS SIFS SIFS SIFS Subframe#X HCS MAC Header PHY Header Subframe#N+15 PHY Header HCS MAC Header Subframe#N+1 Subframe#N Tretry Tperiod PHY Header HCS MAC Header PHY Header HCS MAC Header Time Parameters : Example unit PHY Preamble Tpr 2 usec PHY-header+MAC-header +HCS Lhd 132 bit 1760M BPSK, 1/2 ECC. Rhead 0.88 Gbps Thd 2.15 16QAM wo pilot, 14/15 LDPC Rphy 6.57 Tsifs mpdu Length Lmpd 4 kB Sub-Header+HCS+FCS Lsh 11 B Aggregation Number N 16 Tperiod 86.44429 FER=1-(1-BER)Lmpd・N :(BER:bit error rate) Simplified Estimation Model When Frame Error is occurred with probability of FER, “ONE” Sub-Frames are retransmitted. MAC Throughput (MACtp) vs FER is calculated as below.

Stack ACK vs Block-Ack :Throughput Comparison Common Parameters : unit PHY Preamble Tpr 2 usec PHY-header+MAC-header +HCS Lhd 132 bit 1760M BPSK, 1/2 ECC. Rhead 0.88 Gbps Tsifs Sub-Header+HCS+FCS Lsh 11 B mpdu Length Lmpd 4 kB PHY Rate :6.57Gbps (16QAM, LDPC 14/15 ) Number of Aggregation:16 PHY Rate :52.6Gbps (16QAM x8 MIMO, LDPC 14/15 ) Number of Aggregation:128 FER ~ 4% FER ~ 5% Conclusion As long as FER is less than 10% order, throughput advantage of Block ACK is negligible . (If FER exceed 10% level, Rate adaptation System should work.)