Embedded Systems Design

Slides:



Advertisements
Similar presentations
© Alan Burns and Andy Wellings, 2001 Real-Time Systems and Programming Languages n Buy Real-Time Systems: Ada 95, Real-Time Java and Real-Time POSIX by.
Advertisements

Chapter 3 General-Purpose Processors: Software
Embedded Systems Introduction. What is an Embedded System What is an Embedded System? Definition of an embedded computer system: is a digital system.
CS244-Introduction to Embedded Systems and Ubiquitous Computing Instructor: Eli Bozorgzadeh Computer Science Department UC Irvine Winter 2010.
Real-Time Systems and Programming Languages
EET 4250: Chapter 1 Performance Measurement, Instruction Count & CPI Acknowledgements: Some slides and lecture notes for this course adapted from Prof.
Chapter 1: Introduction
Software Engineering CSE470: Embedded Systems Overview 49 What is an Embedded System What is an Embedded System? Definition of an embedded computer system:
Introduction to Embedded Systems
Embedded Systems Design. 2 Objectives Introduction to embedded systemsIntroduction to embedded systems Embedded system componentsEmbedded system components.
Embedded Systems. 2 A “short list” of embedded systems And the list goes on and on Anti-lock brakes Auto-focus cameras Automatic teller machines Automatic.
1.1 1 Introduction Foundations of Computer Science  Cengage Learning.
REAL-TIME SOFTWARE SYSTEMS DEVELOPMENT Instructor: Dr. Hany H. Ammar Dept. of Computer Science and Electrical Engineering, WVU.
1 3-General Purpose Processors: Altera Nios II 2 Altera Nios II processor A 32-bit soft core processor from Altera Comes in three cores: Fast, Standard,
Lecture 13 Introduction to Embedded Systems Graduate Computer Architecture Fall 2005 Shih-Hao Hung Dept. of Computer Science and Information Engineering.
Welcome to CSE 143! Microelectronic System Design
Sogang University Advanced Computing System Chap 1. Computer Architecture Hyuk-Jun Lee, PhD Dept. of Computer Science and Engineering Sogang University.
Embedded System Design 王佑中 Yu-Chung
EEL Software development for real-time engineering systems.
High Performance Embedded Computing © 2007 Elsevier Lecture 3: Design Methodologies Embedded Computing Systems Mikko Lipasti, adapted from M. Schulte Based.
High Performance Embedded Computing © 2007 Elsevier Chapter 1, part 2: Embedded Computing High Performance Embedded Computing Wayne Wolf.
Embedded Systems Design: A Unified Hardware/Software Introduction 1 Chapter 3 General-Purpose Processors: Software.
REAL-TIME SOFTWARE SYSTEMS DEVELOPMENT Instructor: Dr. Hany H. Ammar Dept. of Computer Science and Electrical Engineering, WVU.
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
What is a Microprocessor ? A microprocessor consists of an ALU to perform arithmetic and logic manipulations, registers, and a control unit Its has some.
CS244-Introduction to Embedded Systems and Ubiquitous Computing Instructor: Eli Bozorgzadeh Computer Science Department UC Irvine Winter 2012.
Chapter 1: Embedded Computing Embedded System Design.
Embedded Real-Time Systems
Programmable Logic Devices Zainalabedin Samadi. Embedded Systems Technology  Programmable Processors  Application Specific Processor (ASIP)  Single.
Embedded Systems. What is Embedded Systems?  Embedded reflects the facts that they are an integral.
Industrial Automation Part I Real Time Control Embedded Systems.
Introduction to Embedded Systems
Computer Systems Nat 4/5 Computing Science Computer Structure:
Programmable Logic Devices
Introduction to Embedded Systems
Real-time Software Design
Introduction to Microcontrollers
Programmable Hardware: Hardware or Software?
High-Performance Embedded System Design: Using FPGA
EMBEDDED SYSTEMS.
Chapter 1: Introduction
Computer Organization and Machine Language Programming CPTG 245
Introduction Edited by Enas Naffar using the following textbooks: - A concise introduction to Software Engineering - Software Engineering for students-
ECE354 Embedded Systems Introduction C Andras Moritz.
6. Structure of Computers
Introduction to Software Engineering (2/2)
COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE
Embedded Systems Introduction
Chapter 7.2 Computer Architecture
EMBEDDED SYSTEMS
Introduction to Operating System (OS)
Microcomputer Architecture
Chapter 1: Introduction
Introduction to Reconfigurable Computing
Introduction to Realtime Systems (& Embedded Systems)
Introduction Edited by Enas Naffar using the following textbooks: - A concise introduction to Software Engineering - Software Engineering for students-
Internet-of-Things (IoT)
Anne Pratoomtong ECE734, Spring2002
Tiny Computers, Hidden Control
CS 501: Software Engineering Fall 1999
Introduction to Embedded Systems
HIGH LEVEL SYNTHESIS.
CS385T Software Engineering Dr.Doaa Sami
Subject Name: Operating System Concepts Subject Number:
Embedded Processors.
SNS COLLEGE OF TECHNOLOGY
Introduction to Embedded Systems
SNS COLLEGE OF TECHNOLOGY
Embedded Systems By : Simran Amaandeep Singh
Course Code 114 Introduction to Computer Science
Presentation transcript:

Embedded Systems Design

Design Constraints Introduction to Embedded Systems Setha Pan-ngum Slide credit – P Koopman, CMU Introduction to Embedded Systems Setha Pan-ngum

Design Challenges Does it really work? How do we work on the system? Is the specification correct? Does the implementation meet the spec? How do we test for real-time characteristics? How do we test on real data? How do we work on the system? Observability, controllability? What is our development platform? Slide credit – P Koopman, CMU More importantly – optimising design metrics!! Introduction to Embedded Systems Setha Pan-ngum

Design Metrics Common metrics Unit cost: the monetary cost of manufacturing each copy of the system, excluding NRE cost NRE cost (Non-Recurring Engineering cost): The one-time monetary cost of designing the system Size: the physical space required by the system Performance: the execution time or throughput of the system Power: the amount of power consumed by the system Flexibility: the ability to change the functionality of the system without incurring heavy NRE cost Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction Introduction to Embedded Systems Setha Pan-ngum

Design Metrics Common metrics (continued) Time-to-prototype: the time needed to build a working version of the system Time-to-market: the time required to develop a system to the point that it can be released and sold to customers Maintainability: the ability to modify the system after its initial release Correctness, safety, many more Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction Introduction to Embedded Systems Setha Pan-ngum

Trade-off in Design Metrics Expertise with both software and hardware is needed to optimize design metrics Not just a hardware or software expert, as is common A designer must be comfortable with various technologies in order to choose the best for a given application and constraints Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction Size Performance Power NRE cost Introduction to Embedded Systems Setha Pan-ngum

Time-to-market: a demanding design metric Time required to develop a product to the point it can be sold to customers Market window Period during which the product would have highest sales Average time-to-market constraint is about 8 months Delays can be costly Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction Revenues ($) Time (months) Introduction to Embedded Systems Setha Pan-ngum

Losses due to delayed market entry Simplified revenue model Product life = 2W, peak at W Time of market entry defines a triangle, representing market penetration Triangle area equals revenue Loss The difference between the on-time and delayed triangle areas Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction On-time Delayed entry entry Peak revenue Peak revenue from delayed entry Market rise Market fall W 2W Time D On-time Delayed Revenues ($) Introduction to Embedded Systems Setha Pan-ngum

Other Design Considerations Dependability Reliability: probability of system working correctly provided that it worked at time t=0 Maintainability: probability of system working correctly d time units after error occurred. [Some systems require no maintenance throughout their operating lives (e.g. electric kettles, computer keyboards), while some may need it such as mobile phones and airplane flight control (software upgrade)] Introduction to Embedded Systems Setha Pan-ngum

Other Design Considerations Dependability Availability: probability of system working at time t Safety Security: in communication Basically, critical applications have to operate correctly at all time e.g. airplane flight control computer. This includes both hardware and software aspects. Introduction to Embedded Systems Setha Pan-ngum

Example of System Fault Slide credit B. Pahami

Other Design Considerations Operating environment Some engine Electronic Control Units (ECUs) in cars are located under the bonnets. So they have to work at high temperature, as well as dusty and wet environment. EMI (Electromagnetic Interference) Introduction to Embedded Systems Setha Pan-ngum

Real-Time Consideration Correct operation of real-time systems means: Working correctly (functionally correct) Producing outputs in time! i.e. correct result at the right time Introduction to Embedded Systems Setha Pan-ngum

Hard Real-time System designed to meet all deadlines A missed deadline is a design flaw For examples: ABS brake, nuclear reactor monitoring system System hardware (over) designed for worst-case performance System software rigorously tested Formal proofs used to guarantee timing correctness Slide credit – T Givargis Introduction to Embedded Systems Setha Pan-ngum

Firm Real-time System designed to meet all deadlines, but occasional missed deadline is allowed Sometimes statistically quantified (e.g. 5% misses) For examples: multimedia systems System hardware designed for average case performance System software tested under average (ideal) conditions Slide credit – T Givargis Introduction to Embedded Systems Setha Pan-ngum

Soft Real-time System designed to meet as many deadlines as possible Best effort to complete within specified time, but may be late For examples: network switch or router System hardware designed for average case performance System software tested under averaged (ideal) conditions Slide credit – T Givargis Introduction to Embedded Systems Setha Pan-ngum

Deadlines • : maximum time before associated with execution of a task a task must complete The profit associated with execution of a task is after the deadline: – Hard deadline: negative Firm deadline: 0 (either make it or just don’t do it) Soft deadline: decreasing with time time d task soft firm hard Slide taken from J.J Lukkien Introduction to Embedded Systems Setha Pan-ngum

Levels of Embedded System Design Slide credit – Ingo Sander Introduction to Embedded Systems Setha Pan-ngum

Design Abstraction Introduction to Embedded Systems Setha Pan-ngum Slide credit – Ingo Sander Introduction to Embedded Systems Setha Pan-ngum

Abstraction Levels Introduction to Embedded Systems Setha Pan-ngum Slide credit – Ingo Sander Introduction to Embedded Systems Setha Pan-ngum

Abstraction Levels Introduction to Embedded Systems Setha Pan-ngum Slide credit – Ingo Sander Introduction to Embedded Systems Setha Pan-ngum

Abstraction Levels Introduction to Embedded Systems Setha Pan-ngum Slide credit – Ingo Sander Introduction to Embedded Systems Setha Pan-ngum

Abstraction Level Introduction to Embedded Systems Setha Pan-ngum Slide credit – Ingo Sander Introduction to Embedded Systems Setha Pan-ngum

Hardware vs Software Many functions can be done by software on a general purpose microprocessor OR by hardware on an application specific ICs (ASICs) For examples: game console graphic, PWM, PID control Leads to Hardware/Software Co-design concept Introduction to Embedded Systems Setha Pan-ngum

Hardware or Software? Where to place functionality? ex: A Sort algorithm Faster in hardware, but more expensive. More flexible in software but slower. Other examples? Must be able to explore these various trade-offs: Cost. Speed. Reliability. Form (size, weight, and power constraints.) Slide credit - W. McUmber, MSU Introduction to Embedded Systems Setha Pan-ngum

Hardware vs Software Workstations Personal Computers Embedded Application-Specific Processors Domain-Specific General-Purpose FFT Processors MPEG Processors FIR Processors Graphics Processors DSP Processors Network Processors Workstations Personal Computers Power/Performance Programmability and Flexibility Slide credit - Mike Schulte Introduction to Embedded Systems Setha Pan-ngum

Hardware vs Software Introduction to Embedded Systems Setha Pan-ngum Slide credit – Ingo Sander Introduction to Embedded Systems Setha Pan-ngum

General-purpose processors Programmable device used in a variety of applications Also known as “microprocessor” Features Program memory General datapath with large register file and general ALU User benefits Low time-to-market and NRE costs High flexibility “Pentium” the most well-known, but there are hundreds of others IR PC Register file General ALU Datapath Controller Program memory Assembly code for: total = 0 for i =1 to … Control logic and State register Data memory Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction, 2000 Introduction to Embedded Systems Setha Pan-ngum

Single-purpose processors Digital circuit designed to execute exactly one program a.k.a. coprocessor, accelerator or peripheral Features Contains only the components needed to execute a single program No program memory Benefits Fast Low power Small size Datapath Controller Control logic State register Data memory index total + Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction, 2000 Introduction to Embedded Systems Setha Pan-ngum

Application-specific processors Programmable processor optimized for a particular class of applications having common characteristics Compromise between general-purpose and single-purpose processors Features Program memory Optimized datapath Special functional units Benefits Some flexibility, good performance, size and power DSP จัดอยู่ในประเภทนี้ด้วย IR PC Registers Custom ALU Datapath Controller Program memory Assembly code for: total = 0 for i =1 to … Control logic and State register Data memory Slide credit Vahid/Givargis, Embedded Systems Design: A Unified Hardware/Software Introduction, 2000 Introduction to Embedded Systems Setha Pan-ngum

FPGA Architecture Introduction to Embedded Systems Setha Pan-ngum Programmable switch at wiring intersection (credit: www.wikipedia.com) FPGA layout with Configurable Logic Blocks (CLB) and I/O Blocks (IOB) (credit: Katz’s Contemporary Logic Design) Typical CLB (credit: www.wikipedia.com) Introduction to Embedded Systems Setha Pan-ngum

Highly constrained products tend to use application specific processors Many mobile phones (power&size constrained) contain ARM chips Hi-Fi (high performance&time constrained) contain DSP chips Introduction to Embedded Systems Setha Pan-ngum

Software Costs Introduction to Embedded Systems Setha Pan-ngum Slide credit – P Koopman, CMU Introduction to Embedded Systems Setha Pan-ngum

Future Embedded Systems Slide credit – P Koopman, CMU Introduction to Embedded Systems Setha Pan-ngum