James J. Pilla, PhD, Kevin J. Koomalsingh, MD, Jeremy R

Slides:



Advertisements
Similar presentations
Date of download: 1/9/2018 Copyright © ASME. All rights reserved.
Advertisements

Mammalian Cardiac Regeneration After Fetal Myocardial Infarction Requires Cardiac Progenitor Cell Recruitment  Myron Allukian, MD, Junwang Xu, PhD, Michael.
Khurram Owais, MD, Charles E. Taylor, PhD, Luyang Jiang, MD, Kamal R
Coronary Artery Bypass for Heart Failure in Ischemic Cardiomyopathy: 17-Year Follow- Up  Marco Pocar, MD, PhD, Andrea Moneta, MD, Adalberto Grossi, MD,
Left Ventricular Unloading by Impella Device Versus Surgical Vent During Extracorporeal Life Support  Sarah Tepper, BS, Muhammad Faraz Masood, MD, Moises.
Ali N. Azadani, PhD, Sam Chitsaz, MD, Peter B
Left Ventricular Bronchogenic Cyst
An ovine model of postinfarction dilated cardiomyopathy
Changes in Left Ventricular Function After Mitral Valve Repair for Severe Organic Mitral Regurgitation  Tomasz G. Witkowski, MD, James D. Thomas, MD,
Effects of mitral valve replacement on regional left ventricular systolic strain  Marc R Moon, MD, Abe DeAnda, MD, George T Daughters, MS, Neil B Ingels,
Brian P. Cupps, PhD, Douglas R. Bree, MD, Jason R
Directed Epicardial Assistance in Ischemic Cardiomyopathy: Flow and Function Using Cardiac Magnetic Resonance Imaging  Jeremy R. McGarvey, MD, Norihiro.
Liam P. Ryan, MD, Kanji Matsuzaki, MD, PhD, Mio Noma, MD, Benjamin M
Complications and Risk Assessment of 25 Years in Pediatric Pacing
Walter R. T. Witschey, PhD, Francisco Contijoch, MS, Jeremy R
Myocardial Perfusion, Scarring, and Function in Anomalous Left Coronary Artery From the Pulmonary Artery Syndrome: A Long-Term Analysis Using Magnetic.
Tina M. Morrison, phd, Gilwoo Choi, MS, Christopher K
The Influence of Mitral Annuloplasty on Left Ventricular Flow Dynamics
Andrew K. Knutsen, PhD, Ningning Ma, BS, Ajay K. Taggar, MD, Beckah D
In Vitro Mitral Valve Simulator Mimics Systolic Valvular Function of Chronic Ischemic Mitral Regurgitation Ovine Model  Andrew W. Siefert, MS, Jean Pierre.
Theoretic Impact of Infarct Compliance on Left Ventricular Function
Norihiro Kondo, MD, Takashi Shuto, MD, Jeremy R. McGarvey, MD, Kevin J
John D. Rutkoski, MD, Beth A. Schrope, MD, Benjamin E. Lee, MD 
In-Vivo Dynamic Deformation of the Mitral Valve Anterior Leaflet
Alison M. Pouch, PhD, Benjamin M
Three-Dimensional Echocardiography for the Preoperative Assessment of Patients With Left Ventricular Aneurysm  Nina Ajmone Marsan, MD, Jos J.M. Westenberg,
Regional Left Ventricular Reverse Remodeling After Myectomy in Hypertrophic Cardiomyopathy  Jingjin Wang, PhD, Xin Sun, MD, Minghu Xiao, MD, Minghui Zhang,
Randomized Study of Mononuclear Bone Marrow Cell Transplantation in Patients With Coronary Surgery  Qiang Zhao, MD, Yongxin Sun, MD, Limin Xia, MD, Anqing.
Slice-by-Slice Pressure-Volume Loop Analysis Demonstrates Native Differences in Regional Cardiac Contractility and Response to Inotropic Agents  Francisco.
Mammalian Fetal Cardiac Regeneration After Myocardial Infarction Is Associated With Differential Gene Expression Compared With the Adult  Carlos Zgheib,
Reply The Annals of Thoracic Surgery
Dipesh K. Shah, MD, Hartzell V. Schaff, MD, Martin D
Hirotsugu Hamamoto, MD, Bradley G. Leshnower, MD, Landi M
John Alfred Carr, MD, Joseph J. Amato, MD, Robert S.D. Higgins, MD 
First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation  Jonathan F. Wenk, PhD, Zhihong Zhang,
Regional Annular Geometry in Patients With Mitral Regurgitation: Implications for Annuloplasty Ring Selection  Arminder S. Jassar, MBBS, Mathieu Vergnat,
Who Do You Say You Are? The Annals of Thoracic Surgery
Asymmetric Mechanical Properties of Porcine Aortic Sinuses
Residual Stress Impairs Pump Function After Surgical Ventricular Remodeling: A Finite Element Analysis  Joe Luis Pantoja, Zhihong Zhang, Mehrzad Tartibi,
Mammalian Cardiac Regeneration After Fetal Myocardial Infarction Requires Cardiac Progenitor Cell Recruitment  Myron Allukian, MD, Junwang Xu, PhD, Michael.
Effects of Aneurysm on the Mechanical Properties and Histologic Structure of Aortic Sinuses  Eleftherios P. Kritharis, PhD, Dimitrios C. Iliopoulos, MD,
Patient-Specific Finite Element–Based Analysis of Ventricular Myofiber Stress After Coapsys: Importance of Residual Stress  Richard Carrick, BS, Liang.
Temporal Changes in Infarct Material Properties: An In Vivo Assessment Using Magnetic Resonance Imaging and Finite Element Simulations  Jeremy R. McGarvey,
Injectable Microsphere Gel Progressively Improves Global Ventricular Function, Regional Contractile Strain, and Mitral Regurgitation After Myocardial.
Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion  Aditya K. Kaza, MD, Isaac Wamala, MD, Ingeborg.
Modification of Infarct Material Properties Limits Adverse Ventricular Remodeling  Masato Morita, MD, Chad E. Eckert, PhD, Kanji Matsuzaki, MD, PhD, Mio.
Mathieu Vergnat, MD, Melissa M. Levack, MD, Benjamin M
Ischemic Mitral Regurgitation: Impact of the Left Ventricle and Mitral Valve in Patients with Left Ventricular Systolic Dysfunction  Monvadi B. Srichai,
Helical myofiber orientation after myocardial infarction and left ventricular surgical restoration in sheep  Joseph C. Walker, BS, Julius M. Guccione,
Neurofibromatosis of the Esophagus
Comparison of the Young-Laplace Law and Finite Element Based Calculation of Ventricular Wall Stress: Implications for Postinfarct and Surgical Ventricular.
Matthew C. Henn, MD, Christopher P
Wall Stress and Geometry of the Thoracic Aorta in Patients With Aortic Valve Disease  Barry J. Doyle, PhD, Paul E. Norman, DS, Peter R. Hoskins, DSc, David.
Left ventricular hamartoma associated with ventricular tachycardia
Elimination of Ischemic Mitral Regurgitation Does Not Alter Long-Term Left Ventricular Remodeling in the Ovine Model  Kanji Matsuzaki, MD, PhD, Masato.
Gregory A Thomas, MD, Larry W Stephenson, MD 
Shinya Kanemoto, MD, Muneaki Matsubara, MD, Mio Noma, MD, Bradley G
Luís Henrique W. Gowdak, MD, PhD, Isolmar T
Hemorrhage Into a Pericardial Cyst and Associated Right Ventricular Compression After Blunt Chest Trauma  Veysel Temizkan, MD, Burak Onan, MD, Kaan Inan,
Norwood Stage 1 With Surgical Ventricular Reconstruction and Mitral Valve Repair for Neonatal Idiopathic Left Ventricular Dilated Cardiomyopathy  Patrick.
Peak Wall Stress Predicts Expansion Rate in Descending Thoracic Aortic Aneurysms  Eric K. Shang, MD, Derek P. Nathan, MD, Shanna R. Sprinkle, BS, Sarah.
Effect of Adjustable Passive Constraint on the Failing Left Ventricle: A Finite-Element Model Study  Choon-Sik Jhun, PhD, Jonathan F. Wenk, PhD, Zhihong.
Echocardiographic Predictors of Left Ventricular Function and Clinical Outcomes After Successful Mitral Valve Repair: Conventional Two-Dimensional Versus.
Mathieu Vergnat, MD, Arminder S. Jassar, MBBS, Benjamin M
Andrew D Cochrane, Shobhna Pathik, Joseph J Smolich, Robert A
Mark I. Block, MD  The Annals of Thoracic Surgery 
Bicuspid Aortic Valves and Dilatation of the Ascending Aorta: Reply
Felix F. Ungacta, Victor G. Dávila-Román, Michael J. Moulton, Brian P
Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm  Joseph C. Walker, PhD, Mark B. Ratcliffe,
Michael J. Weyant, MD, Manjit S
Presentation transcript:

Regional Myocardial Three-Dimensional Principal Strains During Postinfarction Remodeling  James J. Pilla, PhD, Kevin J. Koomalsingh, MD, Jeremy R. McGarvey, MD, Walter R.T. Witschey, PhD, Larry Dougherty, PhD, Joseph H. Gorman, MD, Robert C. Gorman, MD  The Annals of Thoracic Surgery  Volume 99, Issue 3, Pages 770-778 (March 2015) DOI: 10.1016/j.athoracsur.2014.10.067 Copyright © 2015 The Society of Thoracic Surgeons Terms and Conditions

Fig 1 Coordinate system of principal strain vectors. (A) Radial-circumferential angle (θRC) is the principal strain vector projected on the radial-circumferential plane. Analogous descriptions are used for the (B) radial-longitudinal (θRL) and (C) longitudinal circumferential (θCL) planes. (Circ = circumferential; Long = longitudinal.) The Annals of Thoracic Surgery 2015 99, 770-778DOI: (10.1016/j.athoracsur.2014.10.067) Copyright © 2015 The Society of Thoracic Surgeons Terms and Conditions

Fig 2 Tagged images of left ventricular remodeling after myocardial infarction. Short-axis midventricular images acquired at baseline (left), 1 week (middle), and 4 weeks (right) after infarct. (Top row) End diastole (ED) images show the change in left ventricle size and geometry with infarct progression. (Bottom row) Regional tag deformation at end systole (ES) are shown for the three timepoints. Infarct region is delineated using markers, which create signal voids (arrows). The Annals of Thoracic Surgery 2015 99, 770-778DOI: (10.1016/j.athoracsur.2014.10.067) Copyright © 2015 The Society of Thoracic Surgeons Terms and Conditions

Fig 3 Regional maximum principal strain magnitude and angles during left ventricle remodeling. (A) Maximum principal strain magnitude (E1Mag) is altered in all regions as the ventricle remodels. Infarct (INF) has the greatest change in E1Mag, decreasing at 1 week, then increasing at 4 weeks. Maximum principal strain angles (B) E1θRC, (C) E1θRL, and (D) E1θCL were unchanged in the remote (REM) region. Infarct and border zone (BZ) angles rotated away from the radial direction to a more circumferential-longitudinal direction, indicating stretch. +p < 0.05 versus baseline; ‡p < 0.05 versus 1 week; *p < 0.05 versus remote; •p < 0.05 versus BZ. (Black bars = baseline; dark gray bars = 1 week; light gray bars = 4 weeks.) The Annals of Thoracic Surgery 2015 99, 770-778DOI: (10.1016/j.athoracsur.2014.10.067) Copyright © 2015 The Society of Thoracic Surgeons Terms and Conditions

Fig 4 Regional minimum principal strain magnitude and angles during left ventricle remodeling. (A) At 1 week, minimum principal strain magnitude (E3Mag) decreases in all regions but increases as remodeling continues. Remote (REM) improvement could be attributed to left ventricle compensation whereas border zone (BZ) and infarct (INF) increase is probably a consequence of tissue stretch. Angles (B) E3θRC, (C) E3θRL, and (D) E3θCL are altered in all regions, which may be attributed to both changes in infarct and BZ tissue properties and decreased left ventricular torsion. +p < 0.05 versus baseline; ‡p < 0.05 versus 1 week; *p < 0.05 versus remote; •p < 0.05 versus BZ. (Black bars = baseline; dark gray bars = 1 week; light gray bars = 4 weeks.) The Annals of Thoracic Surgery 2015 99, 770-778DOI: (10.1016/j.athoracsur.2014.10.067) Copyright © 2015 The Society of Thoracic Surgeons Terms and Conditions

Fig 5 Bulls-eye plots of (A) maximum principal strain (E1Mag) and (B) minimum principal strain (E3Mag) at baseline, 1 week (1-Wk), and 4 weeks (4-Wk) after infarct (INF) for a representative animal. Plots display three midventricular slices from apex (inner) to base (outer) for remote (REM), border zone (BZ), and infarct (INF) regions. The E1Mag decreases in all regions at 1 week but increases at 4 weeks in the infarct. Infarct E1 vectors (E1θRC, E1θRL) shift from radial direction at baseline to more circumferential-longitudinal, signifying decreased wall thickening and increased tissue stretch. Circumferential shortening (E3Mag) decreases in all regions as the left ventricle remodels, whereas infarct E3 vectors (E3θRC, E3θRL) shift from circumferential-longitudinal to a more radial direction, indicating tissue stretch. The Annals of Thoracic Surgery 2015 99, 770-778DOI: (10.1016/j.athoracsur.2014.10.067) Copyright © 2015 The Society of Thoracic Surgeons Terms and Conditions

Fig 6 Regional intermediate principal strain magnitude and angles during left ventricle remodeling. (A) Contrasting maximum strain magnitude (E1Mag) and minimum strain magnitude (E3Mag), the regional magnitude of E2 (E2Mag) varies significantly with location before infarction (INF). (B) After infarction, E2θRC is altered at 4 weeks, with little change in the remote (REM) and border zone (BZ). (C) The E2θRL is decreased at 1 week and 4 weeks after myocardial infarction. (D) E2θCL decreases in REM and BZ as LV remodels while INF remains elevated above baseline at 1 week and 4 weeks. +p < 0.05 versus baseline; *p < 0.05 versus REM; •p < 0.05 versus BZ. (Black bars = baseline; dark gray bars = 1 week; light gray bars = 4 weeks.) The Annals of Thoracic Surgery 2015 99, 770-778DOI: (10.1016/j.athoracsur.2014.10.067) Copyright © 2015 The Society of Thoracic Surgeons Terms and Conditions