Lecture 25 CSE 331 Oct 28, 2013.

Slides:



Advertisements
Similar presentations
7.3 Kruskal’s Algorithm. Kruskal’s Algorithm was developed by JOSEPH KRUSKAL.
Advertisements

Lecture 26 CSE 331 Nov 4, The week of Nov 16 Jeff will be out of town for a conference Recitations and office hour cancelled for that week Two extra.
CSE 421 Algorithms Richard Anderson Dijkstra’s algorithm.
Lecture 28 CSE 331 Nov 9, Flu and HW 6 Graded HW 6 at the END of the lecture If you have the flu, please stay home Contact me BEFORE you miss a.
Minimum Spanning Trees CIS 606 Spring Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting.
CSE 421 Algorithms Richard Anderson Lecture 10 Minimum Spanning Trees.
Lecture 27 CSE 331 Nov 3, Combining groups Groups can unofficially combine in the lectures.
T,  e  T c(e) = 50 G = (V, E), c(e) Minimum Spanning Tree.
1 CSE 417: Algorithms and Computational Complexity Winter 2001 Lecture 11 Instructor: Paul Beame.
Design and Analysis of Algorithms Minimum Spanning trees
Lecture 25 CSE 331 Nov 2, Adding teeth to group talk Form groups of size at most six (6) Pick a group leader I will ask group leader(s) to come.
Lecture 28 CSE 331 Nov 5, HW 7 due today Q1 in one pile and Q 2+3 in another I will not take any HW after 1:15pm.
Lecture 30 CSE 331 Nov 10, Online Office Hours
Lecture 27 CSE 331 Nov 6, Homework related stuff Solutions to HW 7 and HW 8 at the END of the lecture Turn in HW 7.
Minimum Spanning Trees
Minimum Spanning Trees. Subgraph A graph G is a subgraph of graph H if –The vertices of G are a subset of the vertices of H, and –The edges of G are a.
Minimum Spanning Tree Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2008.
0 Course Outline n Introduction and Algorithm Analysis (Ch. 2) n Hash Tables: dictionary data structure (Ch. 5) n Heaps: priority queue data structures.
Lecture19: Graph III Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Lecture 23 CSE 331 Oct 24, Reminder 2 points for Piazza participation 3 points for mini-project.
Minimum Spanning Trees CSE 373 Data Structures Lecture 21.
Kruskal’s Algorithm for Computing MSTs Section 9.2.
Minimum Spanning Trees
May 12th – Minimum Spanning Trees
Minimum Spanning Tree Chapter 13.6.
Lecture 26 CSE 331 Nov 2, 2016.
Lecture 22 Minimum Spanning Tree
Lecture 23 CSE 331 Oct 26, 2016.
Data Structures & Algorithms Graphs
Autumn 2016 Lecture 11 Minimum Spanning Trees (Part II)
Graph Algorithm.
Minimum-Cost Spanning Tree
Minimum Spanning Tree.
Minimum Spanning Trees
Connected Components Minimum Spanning Tree
Minimum Spanning Tree.
Lecture 24 CSE 331 Oct 28, 2016.
Lecture 24 CSE 331 Oct 27, 2017.
Autumn 2015 Lecture 11 Minimum Spanning Trees (Part II)
CSE 373 Data Structures and Algorithms
Lecture 24 CSE 331 Oct 25, 2013.
Lecture 26 CSE 331 Nov 1, 2017.
Chapter 23 Minimum Spanning Tree
Warm Up – Friday.
Minimum-Cost Spanning Tree
Lecture 22 CSE 331 Oct 23, 2017.
Lecture 23 CSE 331 Oct 25, 2017.
Lecture 24 CSE 331 Oct 29, 2012.
Lecture 23 CSE 331 Oct 24, 2011.
Lecture 26 CSE 331 Nov 2, 2012.
Lecture 22 CSE 331 Oct 24, 2016.
Autumn 2015 Lecture 10 Minimum Spanning Trees
Lecture 27 CSE 331 Oct 31, 2014.
Lecture 25 CSE 331 Oct 27, 2014.
Lecture 28 CSE 331 Nov 7, 2012.
Lecture 27 CSE 331 Nov 2, 2010.
Richard Anderson Lecture 10 Minimum Spanning Trees
CSE 373: Data Structures and Algorithms
Lecture 24 CSE 331 Oct 24, 2014.
Autumn 2016 Lecture 10 Minimum Spanning Trees
Minimum spanning trees
Minimum Spanning Trees (MSTs)
Winter 2019 Lecture 11 Minimum Spanning Trees (Part II)
Lecture 25 CSE 331 Oct 28, 2011.
Prim’s algorithm for minimum spanning trees
Winter 2019 Lecture 10 Minimum Spanning Trees
CSE 373: Data Structures and Algorithms
Minimum-Cost Spanning Tree
Lecture 27 CSE 331 Nov 1, 2013.
Autumn 2019 Lecture 11 Minimum Spanning Trees (Part II)
Presentation transcript:

Lecture 25 CSE 331 Oct 28, 2013

Mid-term temp grade cutoffs

If you have a D or below

Building a fiber network Lay down fibers to connect n locations All n locations should be connected Laying down a fiber costs money What is the cheapest way to lay down the fibers?

Today’s agenda Minimum Spanning Tree (MST) Problem Greedy algorithm(s) for MST problem

Kruskal’s Algorithm Input: G=(V,E), ce> 0 for every e in E T = Ø Sort edges in increasing order of their cost Joseph B. Kruskal Consider edges in sorted order If an edge can be added to T without adding a cycle then add it to T

Prim’s algorithm Similar to Dijkstra’s algorithm 2 1 3 51 50 0.5 Robert Prim 2 0.5 Input: G=(V,E), ce> 0 for every e in E 1 50 S = {s}, T = Ø While S is not the same as V Among edges e= (u,w) with u in S and w not in S, pick one with minimum cost Add w to S, e to T

Reverse-Delete Algorithm 2 1 3 51 50 0.5 Input: G=(V,E), ce> 0 for every e in E 2 0.5 T = E 1 3 50 Sort edges in decreasing order of their cost 51 Consider edges in sorted order If an edge can be removed T without disconnecting T then remove it

(Old) History of MST algorithms 1920: Otakar Borůvka 1930: Vojtěch Jarník Same algo! 1956: Kruskal 1957: Prim 1959: Dijkstra