Armando J. de Jesus, Ormacinda R. White, Aaron D. Flynn, Hang Yin 

Slides:



Advertisements
Similar presentations
Not Just an Oil Slick: How the Energetics of Protein-Membrane Interactions Impacts the Function and Organization of Transmembrane Proteins  Sayan Mondal,
Advertisements

Voltage-Dependent Hydration and Conduction Properties of the Hydrophobic Pore of the Mechanosensitive Channel of Small Conductance  Steven A. Spronk,
Volume 112, Issue 11, Pages (June 2017)
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
Retinal Conformation Changes Rhodopsin’s Dynamic Ensemble
Volume 83, Issue 3, Pages (September 2002)
Β-Hairpin Folding Mechanism of a Nine-Residue Peptide Revealed from Molecular Dynamics Simulations in Explicit Water  Xiongwu Wu, Bernard R. Brooks  Biophysical.
Richard J. Law, Keith Munson, George Sachs, Felice C. Lightstone 
Influence of Chain Length and Unsaturation on Sphingomyelin Bilayers
Composition Fluctuations in Lipid Bilayers
Volume 90, Issue 4, Pages (February 2006)
Liqun Zhang, Susmita Borthakur, Matthias Buck  Biophysical Journal 
Volume 95, Issue 6, Pages (September 2008)
Volume 112, Issue 2, Pages (January 2017)
Volume 108, Issue 1, Pages (January 2015)
Volume 102, Issue 3, Pages (February 2012)
S.W. Chiu, Eric Jakobsson, R. Jay Mashl, H. Larry Scott 
Andrew E. Blanchard, Mark J. Arcario, Klaus Schulten, Emad Tajkhorshid 
Volume 18, Issue 10, Pages (October 2010)
J.L. Robertson, L.G. Palmer, B. Roux  Biophysical Journal 
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Hyunbum Jang, Buyong Ma, Thomas B. Woolf, Ruth Nussinov 
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Computational Modeling Reveals that Signaling Lipids Modulate the Orientation of K- Ras4A at the Membrane Reflecting Protein Topology  Zhen-Lu Li, Matthias.
Volume 103, Issue 8, Pages (October 2012)
Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects  Robert Vácha, Max L. Berkowitz,
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Hisashi Ishida, Hidetoshi Kono  Biophysical Journal 
Volume 102, Issue 9, Pages (May 2012)
Volume 92, Issue 1, Pages L07-L09 (January 2007)
Sundeep S. Deol, Peter J. Bond, Carmen Domene, Mark S.P. Sansom 
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Volume 107, Issue 5, Pages (September 2014)
Volume 76, Issue 3, Pages (March 1999)
Volume 95, Issue 9, Pages (November 2008)
Investigating Lipid Composition Effects on the Mechanosensitive Channel of Large Conductance (MscL) Using Molecular Dynamics Simulations  Donald E. Elmore,
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Interfacial Properties of High-Density Lipoprotein-like Lipid Droplets with Different Lipid and Apolipoprotein A-I Compositions  Artturi Koivuniemi, Marko.
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Chetan Poojari, Dequan Xiao, Victor S. Batista, Birgit Strodel 
Allison N. Dickey, Roland Faller  Biophysical Journal 
Allison Dickey, Roland Faller  Biophysical Journal 
Kristen E. Norman, Hugh Nymeyer  Biophysical Journal 
Thomas H. Schmidt, Yahya Homsi, Thorsten Lang  Biophysical Journal 
Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein
Volume 112, Issue 12, Pages (June 2017)
An Atomic Model of the Tropomyosin Cable on F-actin
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Ion-Induced Defect Permeation of Lipid Membranes
Karina Kubiak, Wieslaw Nowak  Biophysical Journal 
Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane  Yang-Shan Lin, Jung-Hsin Lin, Chien-Cheng Chang 
Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
OmpT: Molecular Dynamics Simulations of an Outer Membrane Enzyme
Volume 88, Issue 1, Pages (January 2005)
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Membrane Insertion of a Voltage Sensor Helix
Mijo Simunovic, Gregory A. Voth  Biophysical Journal 
Volume 95, Issue 7, Pages (October 2008)
Sebastian Fritsch, Ivaylo Ivanov, Hailong Wang, Xiaolin Cheng 
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Atomic Detail Peptide-Membrane Interactions: Molecular Dynamics Simulation of Gramicidin S in a DMPC Bilayer  Dan Mihailescu, Jeremy C. Smith  Biophysical.
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Volume 109, Issue 10, Pages (November 2015)
Volume 99, Issue 5, Pages (September 2010)
Volume 106, Issue 8, Pages (April 2014)
Distribution of Halothane in a Dipalmitoylphosphatidylcholine Bilayer from Molecular Dynamics Calculations  Laure Koubi, Mounir Tarek, Michael L. Klein,
Volume 111, Issue 9, Pages (November 2016)
The NorM MATE Transporter from N
Presentation transcript:

Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides  Armando J. de Jesus, Ormacinda R. White, Aaron D. Flynn, Hang Yin  Biophysical Journal  Volume 110, Issue 9, Pages 1980-1992 (May 2016) DOI: 10.1016/j.bpj.2016.04.007 Copyright © 2016 Biophysical Society Terms and Conditions

Figure 1 Flowchart summary of the rationale employed in the choice of peptide sequences used. For the full-length MARCKS-ED, two patterns can be observed: 1) charged residues at the termini of the full-length MARCKS-ED; and 2) FSF sequences that are adjacent to charged residues on either one side or both sides. (a) MARCKS-ED was divided into two “halves” (MRX1 and MRX2), each containing an FSF group and terminating in charged residues. (b) MRX3 and MRX4 explored the effect of reducing the number of Lys at one terminus. (c) MRX5 explored the effect of replacing R with K. (d) MRX6 explored the effect of a terminal F. (e) MRX 7 provided a comparison of MRX5 and MRX6. To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 2 Fluorescence enhancement of NBD-labeled peptides MARCKS-ED, MRX1, MRX2, MRX3, MRX4, MRX5, MRX6, and MRX7 with 30-, 100-, and 400-nm lipid vesicles containing 60% POPC, 15% POPE, 15% cholesterol, and 10% POPS ([peptide] = 500 nM, [lipid] = 500 μM). ∗p < 0.01. To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 3 Fluorescence enhancement of NBD-labeled peptides MARCKS-ED, MRX1, MRX2, MRX3, MRX4, MRX5, MRX6, and MRX7 with 30-, 100- and 400-nm lipid vesicles containing 70% POPC, 15% POPE, and 15% cholesterol ([peptide] = 500 nM, [lipid] = 500 μM). To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 4 Fluorescence enhancement of annexin V with PC only or PC/PS (3:1) 30-, 100-, or 400-nm lipid vesicles ([annexin] = 0.32 μM, [lipid] = 100 μM). To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 5 Atomistic model of (a) MARCKS-ED, (b) MRX2, and (c) MRX6 interacting with membrane bilayers after ∼75 ns of simulation. Lipid tails, water molecules, and some atoms in the foreground were removed for clarity. Lys residues are represented as cyan spheres and Phe residues as purple spheres. The lipid headgroups are shown as choline nitrogen (light violet), phosphate phosphorus (light yellow), and one of the sn-2 carbonyl oxygen (pink). To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 6 Time series of the average side-chain depths of Lys, Phe, and Ser residues for (a) MARCKS-ED, (b) MRX2, and (c) MRX6. The horizontal lines represent the average depth of the headgroup components, choline N (top horizontal line), phosphate P (middle horizontal line), and glycerol carbonyl carbons (bottom horizontal line). To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 7 Histograms of side-chain depths calculated from the simulation trajectory showing the distribution of the z-coordinates of the centers of mass of the side chains of Lys, Phe, and Ser residues for (a) MARCKS-ED, (b) MRX2, and (c) MRX6. To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 8 Radial distribution of headgroup oxygen atoms from POPS and POPC lipids around the Lys side chains of (a) MARCKS-ED, (b) MRX2, and (c) MRX6. To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 9 Time series of the number of lipid headgroup oxygen atoms (phosphate oxygens of POPC and POPS lipids, and carboxyl oxygens in the choline region of POPS lipids) solvating the hydrogens in the amine moieties terminating the Lys (a and b) and Arg (c) side chains. Fig. 9 b shows the solvation of Lys residues on a per-residue basis. To see this figure in color, go online. Biophysical Journal 2016 110, 1980-1992DOI: (10.1016/j.bpj.2016.04.007) Copyright © 2016 Biophysical Society Terms and Conditions