Ch 6.4 Exponential Growth & Decay Calculus Graphical, Numerical, Algebraic by Finney Demana, Waits, Kennedy.

Slides:



Advertisements
Similar presentations
College Algebra & Trigonometry
Advertisements

Exponential Growth and Decay
Exponential Growth or Decay Function
DIFFERENTIAL EQUATIONS: GROWTH AND DECAY Section 6.2.
7.2 – Exponential Change and Separable Differential Equations © 2010 Pearson Education, Inc. All rights reserved Separable Differential Equations.
Section 6.7 – Financial Models
Differential Equations Definition A differential equation is an equation involving derivatives of an unknown function and possibly the function itself.
6.2 Growth and Decay Law of Exponential Growth and Decay C = initial value k = constant of proportionality if k > 0, exponential growth occurs if k < 0,
Diff EQs 6.6. Common Problems: Exponential Growth and Decay Compound Interest Radiation and half-life Newton’s law of cooling Other fun topics.
6.4 Exponential Growth and Decay Greg Kelly, Hanford High School, Richland, Washington Glacier National Park, Montana Photo by Vickie Kelly, 2004.
3.3 – Applications: Uninhibited and Limited Growth Models
OBJECTIVES: FIND EQUATIONS OF POPULATION THAT OBEY THE LAW OF UNINHIBITED GROWTH AND DECAY USE LOGISTIC MODELS Exponential Growth and Decay; Logistic Models.
Exponential Growth and Decay CalculusLesson 7-2 Mr. Hall.
Chapter 6 AP Calculus BC.
Warmup 1) 2). 6.4: Exponential Growth and Decay The number of bighorn sheep in a population increases at a rate that is proportional to the number of.
Sullivan PreCalculus Section 4
6.4 Exponential Growth and Decay Greg Kelly, Hanford High School, Richland, Washington Glacier National Park, Montana Photo by Vickie Kelly, 2004.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Inverse, Exponential, and Logarithmic Functions Copyright © 2013, 2009, 2005 Pearson Education,
AP Calculus Ms. Battaglia. Solve the differential equation.
Exponential Growth and Decay 6.4. Exponential Decay Exponential Decay is very similar to Exponential Growth. The only difference in the model is that.
4.8 Exponential and Logarithmic Models
6.4 Exponential Growth and Decay. What you’ll learn about Separable Differential Equations Law of Exponential Change Continuously Compounded Interest.
Exponential Growth and Decay
Chapter 1: First-Order Differential Equations 1. Sec 1.4: Separable Equations and Applications Definition A 1 st order De of the form is said to.
Lesson 9-4 Exponential Growth and Decay. Generally these take on the form Where p 0 is the initial condition at time t= 0 population shrinking  decay.
Section 7.4: Exponential Growth and Decay Practice HW from Stewart Textbook (not to hand in) p. 532 # 1-17 odd.
Chapter 3 – Differentiation Rules
Using calculus, it can be shown that when the rate of growth or decay of some quantity at a given instant is proportional to the amount present at that.
6 Differential Equations
EXPONENTIAL GROWTH & DECAY; Application In 2000, the population of Africa was 807 million and by 2011 it had grown to 1052 million. Use the exponential.
Differential Equations: Growth and Decay Calculus 5.6.
Section 8.2 Separation of Variables.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights.
Differential Equations: Growth & Decay (6.2) March 16th, 2012.
AP CALCULUS AB Chapter 6:
7.4 B – Applying calculus to Exponentials. Big Idea This section does not actually require calculus. You will learn a couple of formulas to model exponential.
Do Now How long would it take for an initial deposit of $1000 to grow into $1500 if you deposit it into an account that earns 4% interest compounded monthly?
Exponential Growth and Decay 6.4. Slide 6- 2 Quick Review.
Background Knowledge Write the equation of the line with a slope of ½ that goes through the point (8, 17)
Any population of living creatures increases at a rate that is proportional to the number present (at least for a while). Other things that increase or.
Modeling using Logarithms
Chapter 2 Solutions of 1 st Order Differential Equations.
Warm Up Dec. 19 Write and solve the differential equation that models the verbal statement. Evaluate the solution at the specified value. The rate of change.
Aim: Growth & Decay Course: Calculus Do Now: Aim: How do we solve differential equations dealing with Growth and Decay Find.
6.2 Solving Differential Equations Modeling – Refers to finding a differential equation that describes a given physical situation.
Ch. 7 – Differential Equations and Mathematical Modeling 7.4 Solving Differential Equations.
3.8 - Exponential Growth and Decay. Examples Population Growth Economics / Finance Radioactive Decay Chemical Reactions Temperature (Newton’s Law of Cooling)
6.4 Exponential Growth and Decay Objective: SWBAT solve problems involving exponential growth and decay in a variety of applications.
AP Calculus BC Tuesday, 02 February 2016 OBJECTIVE TSW solve exponential growth and decay problems. ASSIGNMENTS DUE FRIDAY –WS Bases Other Than e  given.
6.4 Exponential Growth and Decay. The number of bighorn sheep in a population increases at a rate that is proportional to the number of sheep present.
6.4 Applications of Differential Equations. I. Exponential Growth and Decay A.) Law of Exponential Change - Any situation where a quantity (y) whose rate.
6.4 Exponential Growth and Decay Law of Exponential Change Continuously Compounded Interest Radioactivity Newton’s Law of Cooling Resistance Proportional.
Exponential and Logarithmic Functions 4 Copyright © Cengage Learning. All rights reserved.
 Suppose you deposit $800 in an account that pays 6.3% annual interest. How much will you have 8 years later if the interest is (a) compounded.
DIFFERENTIAL EQUATIONS
Differential Equations
7-4 Exponential Growth and Decay
6.4 Growth and Decay.
Derivatives and Integrals of Logarithmic and Exponential Functions
Calculus II (MAT 146) Dr. Day Monday, Oct 23, 2017
Drill.
6.4 Exponential Growth and Decay, p. 350
6.2 Exponential Growth and Decay
What do all of these have to do with Calculus?!?!?
Calculus II (MAT 146) Dr. Day Friday, March 23, 2018
7.4 Exponential Growth and Decay
Equation Solving and Modeling
6.4 Applications of Differential Equations
Equation Solving and Modeling
Exponential Growth and Decay
Calculus II (MAT 146) Dr. Day Wednesday, March 28, 2018
Presentation transcript:

Ch 6.4 Exponential Growth & Decay Calculus Graphical, Numerical, Algebraic by Finney Demana, Waits, Kennedy

Solving by Separation of Variables

Law of Exponential Change The differential equation that describes growth is , where k is the growth constant (if positive) or decay constant (if negative). We can solve this equation by separating the variables.

v

Continuously Compounded Interest If A0 dollars are invested at a fixed annual rate r (as a decimal) and compounded k times a year, the amount of money present after t years is: If the interest is compounded continuously (or every instant) then the amount of money present after t years is:

Finding Half Life

Modeling Growth At the beginning of summer, the population of a hive of hornets is growing at a rate proportional to the population. From a population of 10 on May 1, the number of hornets grows to 50 in thirty days. If the growth continues to follow the same model, how many days after May 1 will the population reach 100?

Modeling Growth At the beginning of summer, the population of a hive of hornets is growing at a rate proportional to the population. From a population of 10 on May 1, the number of hornets grows to 50 in thirty days. If the growth continues to follow the same model, how many days after May 1 will the population reach 100?

Using Carbon-14 Dating Scientists who use carbon-14 dating use 5700 years for its half-life. Find the age of a sample in which 10% of the radioactive nuclei originally present have decayed.

Using Carbon-14 Dating Scientists who use carbon-14 dating use 5700 years for its half-life. Find the age of a sample in which 10% of the radioactive nuclei originally present have decayed.

Newton’s Law of Cooling

Newton’s Law of Cooling

Using Newton’s Law of Cooling A hard boiled egg at 98ºC is put in a pan under running 18ºC water to cool. After 5 minutes, the egg’s temperature is found to be 38ºC. How much longer will it take the egg to reach 20ºC?

Using Newton’s Law of Cooling A hard boiled egg at 98ºC is put in a pan under running 18ºC water to cool. After 5 minutes, the egg’s temperature is found to be 38ºC. How much longer will it take the egg to reach 20ºC?