Volume 30, Issue 3, Pages (August 2014)

Slides:



Advertisements
Similar presentations
Volume 4, Issue 4, Pages (April 2015)
Advertisements

Jyoti K. Jaiswal, Victor M. Rivera, Sanford M. Simon  Cell 
Dongfang Liu, Mary E. Peterson, Eric O. Long  Immunity 
Volume 21, Issue 5, Pages (November 2011)
RhoD Inhibits RhoC-ROCK-Dependent Cell Contraction via PAK6
Volume 20, Issue 5, Pages (May 2011)
Volume 54, Issue 4, Pages (May 2014)
Volume 12, Issue 3, Pages (September 2012)
Volume 18, Issue 1, Pages (January 2010)
F11L-Mediated Inhibition of RhoA-mDia Signaling Stimulates Microtubule Dynamics during Vaccinia Virus Infection  Yoshiki Arakawa, João V. Cordeiro, Michael.
Volume 57, Issue 3, Pages (February 2015)
Dongfang Liu, Mary E. Peterson, Eric O. Long  Immunity 
Golgin160 Recruits the Dynein Motor to Position the Golgi Apparatus
Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics  Angelika S. Rambold, Sarah.
Volume 15, Issue 2, Pages (August 2008)
An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking
Volume 14, Issue 1, Pages (January 2008)
Volume 22, Issue 5, Pages (May 2012)
Etienne Morel, Robert G. Parton, Jean Gruenberg  Developmental Cell 
Volume 12, Issue 4, Pages (April 2007)
Volume 12, Issue 3, Pages (September 2012)
Volume 21, Issue 6, Pages (December 2011)
Volume 23, Issue 6, Pages (December 2012)
Volume 7, Issue 6, Pages (December 2004)
Volume 22, Issue 1, Pages (January 2012)
Volume 27, Issue 1, Pages (July 2007)
Volume 19, Issue 9, Pages (September 2012)
Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic- reticulum-to-Golgi transport complexes  David T. Shima, Suzie J. Scales, Thomas.
Volume 18, Issue 2, Pages (August 2015)
Volume 21, Issue 10, Pages (December 2017)
Budding Yeast Has a Minimal Endomembrane System
Volume 43, Issue 4, Pages e4 (November 2017)
Volume 18, Issue 2, Pages (January 2008)
Jungmook Lyu, Vicky Yamamoto, Wange Lu  Developmental Cell 
Volume 16, Issue 22, Pages (November 2006)
Volume 24, Issue 1, Pages (January 2013)
Yutian Peng, Lois S. Weisman  Developmental Cell 
Volume 136, Issue 6, Pages (March 2009)
Shijiao Huang, Danming Tang, Yanzhuang Wang  Developmental Cell 
Volume 50, Issue 3, Pages (May 2006)
Septins Regulate Actin Organization and Cell-Cycle Arrest through Nuclear Accumulation of NCK Mediated by SOCS7  Brandon E. Kremer, Laura A. Adang, Ian.
Volume 39, Issue 2, Pages (October 2016)
Volume 3, Issue 2, Pages (February 2006)
The Actin-Bundling Protein Palladin Is an Akt1-Specific Substrate that Regulates Breast Cancer Cell Migration  Y. Rebecca Chin, Alex Toker  Molecular.
Volume 19, Issue 9, Pages (September 2012)
CD28 Signaling via VAV/SLP-76 Adaptors
Distinct Cytoskeletal Tracks Direct Individual Vesicle Populations to the Apical Membrane of Epithelial Cells  Ralf Jacob, Martin Heine, Marwan Alfalah,
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
F11L-Mediated Inhibition of RhoA-mDia Signaling Stimulates Microtubule Dynamics during Vaccinia Virus Infection  Yoshiki Arakawa, João V. Cordeiro, Michael.
Volume 22, Issue 1, Pages (January 2018)
Volume 12, Issue 4, Pages (April 2007)
Role of PINK1 Binding to the TOM Complex and Alternate Intracellular Membranes in Recruitment and Activation of the E3 Ligase Parkin  Michael Lazarou,
Volume 20, Issue 5, Pages (March 2010)
Volume 15, Issue 6, Pages (December 2008)
Yuri Oleynikov, Robert H. Singer  Current Biology 
Enteropathogenic Escherichia coli Recruits the Cellular Inositol Phosphatase SHIP2 to Regulate Actin-Pedestal Formation  Katherine Smith, Daniel Humphreys,
Cellular 5′-3′ mRNA Exonuclease Xrn1 Controls Double-Stranded RNA Accumulation and Anti-Viral Responses  Hannah M. Burgess, Ian Mohr  Cell Host & Microbe 
Volume 19, Issue 8, Pages (April 2009)
Polo-like Kinase 1 Triggers the Initiation of Cytokinesis in Human Cells by Promoting Recruitment of the RhoGEF Ect2 to the Central Spindle  Mark Petronczki,
Volume 129, Issue 2, Pages (April 2007)
Volume 21, Issue 12, Pages (June 2011)
Takashi Hayashi, Gavin Rumbaugh, Richard L. Huganir  Neuron 
Volume 16, Issue 4, Pages (April 2009)
Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor by Gauthami Jalagadugula, Lawrence.
Growth Factor-Dependent Trafficking of Cerebellar NMDA Receptors via Protein Kinase B/Akt Phosphorylation of NR2C  Bo-Shiun Chen, Katherine W. Roche 
Volume 49, Issue 2, Pages (January 2013)
Chronophin Mediates an ATP-Sensing Mechanism for Cofilin Dephosphorylation and Neuronal Cofilin-Actin Rod Formation  Timothy Y. Huang, Laurie S. Minamide,
Volume 134, Issue 1, Pages (July 2008)
A Direct HDAC4-MAP Kinase Crosstalk Activates Muscle Atrophy Program
Jörg Hartkamp, Brian Carpenter, Stefan G.E. Roberts  Molecular Cell 
Presentation transcript:

Volume 30, Issue 3, Pages 280-294 (August 2014) Control Systems of Membrane Transport at the Interface between the Endoplasmic Reticulum and the Golgi  Jorge Cancino, Anita Capalbo, Antonella Di Campli, Monica Giannotta, Riccardo Rizzo, Juan E. Jung, Rosaria Di Martino, Maria Persico, Petra Heinklein, Michele Sallese, Alberto Luini  Developmental Cell  Volume 30, Issue 3, Pages 280-294 (August 2014) DOI: 10.1016/j.devcel.2014.06.018 Copyright © 2014 Elsevier Inc. Terms and Conditions

Developmental Cell 2014 30, 280-294DOI: (10.1016/j.devcel.2014.06.018) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 Synchronized Traffic Waves Activate PKA at the Golgi (A) Cos7 cells were subjected to a VSVG traffic pulse and the fluorescence signal of the catalytic (PKAcat) and regulatory (PKAreg) PKA at the Golgi was quantified. The PKA immunofluorescence signal is shown in grayscale with inverted contrast (lower panels) to facilitate the appreciation of dim structures. The Golgi region in this figure and in all other figures is outlined by a solid red line. (B) Cells expressing CFP-EPAC-(dDEP)-YFP and VSVG-mCherry. cAMP levels are shown by a pseudocolored image of the CFP:YFP ratio. (C) Cos7 cells treated with siRNAs against Gs. (D) Cos7 cells expressing the Gs minigene or treated with R8-Gs peptides. (E) Control (mock) and AC9 siRNA-treated Cos7 cells. Cos7 cells expressing AC9-myc. (F) HeLa cells expressing PDE7A1-myc. All data represent means ± SEM (n = 10–30 cells). ∗∗∗p < 0.001 (Student’s t test). Scale bars represent 10 μm. See also Figure S1. Developmental Cell 2014 30, 280-294DOI: (10.1016/j.devcel.2014.06.018) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 The KDELR Mediates the Traffic-Induced Activation of Gs and PKA at the Golgi (A) Cos7 cells expressing KDELR1-GFP, KDELR2-GFP, or KDELR3-GFP. (B) Cos7 cells expressing KDELR1-GFP or KDEL-containing cargo (ssHRP-KDEL). (C) Cos7 cells incubated with KDEL-BODIPY633 peptide (1 μM) for 30 min. (D) Golgi-enriched membranes from rat liver incubated with [35S]GTPγS and KDEL-BODIPY568 peptide (1 μM) or KDEA-BODIPY568 peptide (1 μM). AU, arbitrary units. (E) Cos7 cells microinjected to express KDELR1-D193N-GFP. (F) Cos7 cells comicroinjected to express either KDELR-GFP or KDELR1-D193N-GFP with VSVG-mCherry. All data represent means ± SEM (B, n = 40 cells; C, n = 20 cells). ∗∗p < 0.01; ∗∗∗p < 0.001 (Student’s t test). Scale bars represent 10 μm. See also Figure S2. Developmental Cell 2014 30, 280-294DOI: (10.1016/j.devcel.2014.06.018) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 Traffic-Induced Activation of the Gs-PKA Pathway Stimulates the Retrograde Transport of the KDELR (A) Cos7 cells subjected to a traffic pulse. (B) Cos7 cells incubated with KDEL-BODIPY633 and R8-Gs peptide. (C) Cos7 cells depleted of Gs or AC9 or treated with the R8-Gs peptide. All data represent means ± SEM (n = 20–30 cells). ∗∗p < 0.01; ∗∗∗p < 0.001 (Student’s t test). Scale bars represent 10 μm. See also Figures S3 and S4. Developmental Cell 2014 30, 280-294DOI: (10.1016/j.devcel.2014.06.018) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 The Gs-PKA Pathway Indirectly Controls Anterograde Transport by Activating Gq/Src (A) HeLa cells expressing hGH-GFP-FM subjected to a VSVG traffic pulse in the presence or absence of either R8-Gs (10 μM) or R8-Gq (100 μM). (B) HeLa cells treated with R8-Gq (100 μM) or R8-Gs (10 μM) and immunoblotted for p-Src (pSFK). (C) HeLa cells incubated with KDEL-BODIPY633 peptide (1 μM) for 30 min in the presence of either R8-Gq (100 μM) or R8-Gs (10 μM) and immunoblotted for p-Src (pSFK). All data represent means ± SEM (A, n = 20–30 cells; B, n = 2 cells). The scale bar represents 10 μm. Developmental Cell 2014 30, 280-294DOI: (10.1016/j.devcel.2014.06.018) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 5 The KDELR-Dependent Gs-PKA Pathway Regulates Golgi Size and Morphology (A) Cos7 cells incubated with BODIPY-FL-C5-ceramide. (B) After treatment as in (A), the cells were fixed and the green:red emission ratio was assessed in the Golgi area. Data in (A) and (B) represent means ± SEM (n = 20 cells). The scale bar represents 10 μm. (C) HeLa cells incubated with R8-Gs for 15 min, fixed, and examined by electron microscopy. The scale bars represent 500 nm. The red arrows indicate intermediate compartments. Developmental Cell 2014 30, 280-294DOI: (10.1016/j.devcel.2014.06.018) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 6 KDELR Activation Stimulates the Phosphorylation of Actin Cytoskeleton Proteins, Which Mediate the Activation of Retrograde Traffic (A) HeLa cells incubated with KDEL-BODIPY633 (1 μM) or KDEA-BODIPY633 (1 μM) for 30 min at 37°C. (B) HeLa cells expressing hGH-GFP-FM (green in inset) were transfected with cofilin-S3A (nonphosphorylatable; blue in inset) or cofilin-S3E (phosphomimetic; blue in inset). AP, adaptor protein. (C) HeLa cells microinjected with cDNA coding for sialyltransferase-RFP cDNA in the nucleus and with purified actin-Alexa488 in the cytosol. Data represent means ± SEM (n = 10–30 cells). ∗∗p < 0.01; ∗∗∗p < 0.001 (Student’s t test). The scale bars represent 10 μm. See also Figure S5. Developmental Cell 2014 30, 280-294DOI: (10.1016/j.devcel.2014.06.018) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 7 KDELR Activation Controls the Phosphorylation and Activation of CREB1 and Gene Expression (A) Cos7 cells transfected with CREB1 or mutant inactive CREB1 (Ser133A) activation reporters. (B) Cos7 cells incubated with KDEL-BODIPY633 or 8-Br-cAMP for 30 min. Data in (A) and (B) represent means ± SEM (A, n = 20 cells; B, n = 3 cells). ∗∗p < 0.01; ∗∗∗p < 0.001 (Student’s t test). (C) HeLa cells expressing monster-GFP under the control of CREB1. The scale bar represents 10 μm. DAPI, 4′,6-diamidino-2-phenylindole. (D) HeLa cells incubated with KDEL-BODIPY633 (1 μM) for 6 hr. mRNA levels were measured using an Affymetrix human gene array. (E) Gene ontology analysis (cellular components). The number of genes of each compartment upregulated is shown. (F and G) Transport fluxes that reach the Golgi carry chaperones that bind to, and activate, the KDELR. Gs leads to the activation of AC9 to increase cAMP levels. cAMP then activates PKA to activate retrograde transport via the phosphorylation of specific components of the actin machinery and COPI (short-term response). Prolonged activation of the KDELR and of PKA results in the phosphorylation and activation of CREB1 and in the upregulation of gene expression (long-term response). See also Figures S6 and S7. Developmental Cell 2014 30, 280-294DOI: (10.1016/j.devcel.2014.06.018) Copyright © 2014 Elsevier Inc. Terms and Conditions