Scientific Computing Lab

Slides:



Advertisements
Similar presentations
Lab Course CFD Preliminay Discussion Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Advertisements

Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
Ordinary Differential Equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L8&9 KFUPM.
Scientific Computing Lab Results Worksheet 2 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Numeriska beräkningar i Naturvetenskap och Teknik 1. Numerical differentiation and quadrature Discrete differentiation and integration Trapezoidal and.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 32 Ordinary Differential Equations.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 31 Ordinary Differential Equations.
Initial-Value Problems
02-04/06/2015 MNT OREN, EE Numerical Methods for Differential Equations Department of Biomedical Engineering Department of Materials Science & Nanotechnology.
CSE 330 : Numerical Methods Lecture 17: Solution of Ordinary Differential Equations (a) Euler’s Method (b) Runge-Kutta Method Dr. S. M. Lutful Kabir Visiting.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
EE3561_Unit 8Al-Dhaifallah14351 EE 3561 : Computational Methods Unit 8 Solution of Ordinary Differential Equations Lesson 3: Midpoint and Heun’s Predictor.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Computational Method in Chemical Engineering (TKK-2109)
Computer Animation Algorithms and Techniques
Numerical Analysis – Differential Equation
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Differential Equations Linear Equations with Variable Coefficients.
Today’s class Ordinary Differential Equations Runge-Kutta Methods
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
SCIENTIFIC DISCOVERY EXPERIMENT THEORY SCIENTIFIC COMPUTING 1.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 6 - Chapters 22 and 23.
Introduction to Differential Equations
Part 7 - Chapter 25.
Scientific Computing Lab
Scientific Computing Lab
Ordinary Differential Equations
Calculus II (MAT 146) Dr. Day Monday, Oct 23, 2017
Numerical Solution of Ordinary Differential Equation
Pressure Poisson Equation
Sharks, Mullet, and Mathematical Ecology
Scientific Computing Lab
Ordinary differential equaltions:
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Part 7 - Chapter 25.
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
ORBITAL Trajectories!!! Made by Karol Sanchez
Scientific Computing Lab
Sec:5.4 RUNGE-KUTTA METHODS.
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L2.
Numerical Analysis Lecture 38.
Numerical solution of first-order ordinary differential equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L6.
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L3 KFUPM.
Spatial Discretisation
Numerical Computation and Optimization
MATH 2140 Numerical Methods
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L7 KFUPM.
Numerical solution of first-order ordinary differential equations 1. First order Runge-Kutta method (Euler’s method) Let’s start with the Taylor series.
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L6 KFUPM.
Presentation transcript:

Scientific Computing Lab Institut für Informatik Scientific Computing in Computer Science Scientific Computing Lab Ordinary Differential Equations Explicit Discretization Dr. Miriam Mehl

Ordinary Differential Equations typical: development of a variable over time radioactive decay - Question to students: which term describes the development of a variable y over time

Ordinary Differential Equations typical: development of a variable over time pendulum - Question to students: which term describes the development of a variable y over time

Ordinary Differential Equations typical: development of a variable over time populations P and Q – competition - Question to students: which term describes the development of a variable y over time

Ordinary Differential Equations typical: development of a variable over time populations P and Q – predator-prey - Question to students: which term describes the development of a variable y over time

Explicit Discretization explicit Euler method of Heun Runge-Kutta

What is Efficiency? number of operations? runtime? accuracy?

What is Efficiency? number of operations? runtime? accuracy? relation accuracy/cost !!!!!

Convergence definition: experimental computation?

More Information http://www.cse.tum.de/vtc/SciComp/ 3.2 Discretizing Ordinary Diferential Equations