Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro

Slides:



Advertisements
Similar presentations
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Advertisements

Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Low-grade inflammation in FGID
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Injection of mesenchymal stem cells in perianal fistulas
Figure 2 The three most commonly performed bariatric surgical procedures Figure 2 | The three most commonly performed bariatric surgical procedures. a.
Figure 4 Simple perianal fistula
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Organs involved in coeliac-disease-associated autoimmunity
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 2 Outline of the pathogenesis and overlap
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Figure 1 Schematic outlining the results of Buffington et al.
Figure 1 Suggested biopsy-avoiding diagnostic pathway for coeliac disease Figure 1 | Suggested biopsy-avoiding diagnostic pathway for coeliac disease.
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Figure 1 Host range of hepatitis E virus
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 High-resolution manometry of achalasia subtypes
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Example wireless motility recording
Figure 2 Key metrics of pressure topography (Clouse)
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Pseudorelaxation as a consequence of
Figure 1 Environmental factors contributing to IBD pathogenesis
Figure 4 Example plots of high-resolution gastroduodenal manometry
Figure 1 Tropical sprue and PI-IBS
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Examples of reflux episodes on pH and pH-impedance monitoring
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 13C-octanoic acid gastric emptying breath test
Figure 4 Functional luminal imaging probe
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 5 Representative barium defecography images
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Metrics from oesophageal high-resolution
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 High-resolution manometry studies performed
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Optical coherence tomography images of specialized intestinal
Figure 3 Examples of gene expression heterogeneity
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Assessment of colonic transit time with radiopaque markers
Figure 5 Systems biological model of IBS
Figure 5 PPIs and adverse events with proven and unproven causality
Figure 4 Local species pools that contribute to the
Figure 1 Cancer stem cell plasticity and stem cell homeostasis in the gut Figure 1 | Cancer stem cell plasticity and stem cell homeostasis in the gut.
Figure 1 Endoscopic appearance of fundic gland polyps
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Distribution of markers of active HBV infection
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Figure 2 Classifications and appearance of CCAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 8 Assessment of colonic tone using a barostat device
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Presentation transcript:

Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2018.7 Figure 5 Lactulose H2 breath test for measurement of orocaecal transit time Figure 5| Lactulose H2 breath test for measurement of orocaecal transit time. Representative lactulose H2 breath tests (LHBTs) are shown for accelerated (30 min), normal (75 min) and delayed (225 min) orocaecal transit times (OCTTs). The test requires H2 measurements at regular intervals after ingestion of lactulose. H2 values of >10 ppm over basal values followed by at least two subsequent increments (arrows) indicate caecal delivery of the nonabsorbable substrate with subsequent bacterial metabolism. This increase in H2 exhalation normally occurs 50–200 min after ingestion of the marker substance (normal range for OCTT marked in grey). Keller, J. et al. (2018) Advances in the diagnosis and classification of gastric and intestinal motility disorders Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2018.7