Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10:00 - 10:50 Mondays, Wednesdays.

Slides:



Advertisements
Similar presentations
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Advertisements

Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
BNAD 276: Statistical Inference in Management Winter, Green sheet Seating Chart.
Please hand in homework on Law of Large Numbers Dan Gilbert “Stumbling on Happiness”
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Modern Languages Row A Row B Row C Row D Row E Row F Row G Row H Row J Row K Row L Row M
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Please hand in Project 4 To your TA.
Physics- atmospheric Sciences (PAS) - Room 201
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
INTEGRATED LEARNING CENTER
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Physics- atmospheric Sciences (PAS) - Room 201
Hand in your Homework Assignment.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Screen Stage Lecturer’s desk Gallagher Theater Row A Row A Row A Row B
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Hand out z tables.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
INTEGRATED LEARNING CENTER
Tuesday: CLT; hypothesis testing; and Type I vs II
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Alyson Lecturer’s desk Chris Flo Jun Trey Projection Booth Screen
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Presentation transcript:

Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10:00 - 10:50 Mondays, Wednesdays & Fridays. Welcome Friday 10/19/18 http://www.youtube.com/watch?v=oSQJP40PcGI http://www.youtube.com/watch?v=oSQJP40PcGI http://www.youtube.com/watch?v=oSQJP40PcGI

Alyson Lecturer’s desk Chris Flo Jun Trey Projection Booth Screen Row A 15 14 Row A 13 12 11 10 9 8 7 6 5 4 3 2 1 Row A Chris Row B 23 22 21 20 Row B 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row B Row C 25 24 23 22 21 Row C 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row C Row D 29 28 27 26 25 24 23 Row D 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row D Row E 31 30 29 28 27 26 25 24 23 Row E 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row E Flo Row F 35 34 33 32 31 30 29 28 27 26 Row F 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row F Row G 35 34 33 32 31 30 29 28 27 26 Row G 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row G Row H 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 Row H 12 11 10 9 8 7 6 5 4 3 2 1 Row H 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1 Row J Row J 13 12 11 10 9 8 7 6 5 4 3 2 41 40 39 38 37 36 35 34 33 32 31 30 29 Row K 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row K Row L 33 32 31 30 29 28 27 26 25 Row L 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row L Row M 21 20 19 Row M 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row M Row N 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Row P 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Jun Trey table 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Projection Booth Left handed desk Harvill 150 renumbered

.. The Green Sheets

Mode = 84 Mean = 82 Median = 84 Mode = 84 Mean = 82 Exam 2 Median = 84

Before next exam (November 16th) Schedule of readings Before next exam (November 16th) Please read chapters 1 - 11 in OpenStax textbook Please read Chapters 2, 3, and 4 in Plous Chapter 2: Cognitive Dissonance Chapter 3: Memory and Hindsight Bias Chapter 4: Context Dependence

Lab sessions Next Week Project 3

Confidence Interval of 95% Has and alpha of 5% α = .05 Critical z -2.58 Critical z 2.58 Confidence Interval of 99% Has and alpha of 1% α = .01 99% Area outside confidence interval is alpha Critical z -1.96 Critical z 1.96 Confidence Interval of 95% Has and alpha of 5% α = .05 95% Area in the tails is called alpha Critical z -1.64 Critical z 1.64 Confidence Interval of 90% Has and alpha of 10% α = . 10 90% Area associated with most extreme scores is called alpha

99% 95% 90% Moving from descriptive stats into inferential stats…. Area outside confidence interval is alpha Area outside confidence interval is alpha Moving from descriptive stats into inferential stats…. 99% Measurements that occur within the middle part of the curve are ordinary (typical) and probably belong there 95% Measurements that occur outside this middle ranges are suspicious, may be an error or belong elsewhere 90%

How do we know if something is going on How do we know if something is going on? How rare/weird is rare/weird enough? Every day examples about when is weird, weird enough to think something is going on? Handing in blue versus white test forms Psychic friend – guesses 999 out of 1000 coin tosses right Cancer clusters – how many cases before investigation Weight gain treatment – one group gained an average of 1 pound more than other group…what if 10?

Why do we care about the z scores that define the middle 95% of the curve? Inferential Statistics Hypothesis testing with z scores allows us to make inferences about whether the sample mean is consistent with the known population mean. Is the mean of my observed sample consistent with the known population mean or did it come from some other distribution?

Why do we care about the z scores that define the middle 95% of the curve? If the z score falls outside the middle 95% of the curve, it must be from some other distribution Main assumption: We assume that weird, or unusual or rare things don’t happen If a score falls out into the 5% range we conclude that it “must be” actually a common score but from some other distribution That’s why we care about the z scores that define the middle 95% of the curve

I’m not an outlier I just haven’t found my distribution yet . Main assumption: We assume that weird, or unusual or rare things don’t happen I’m not an outlier I just haven’t found my distribution yet If a score falls out into the tails (low probability) we conclude that it “must be” a common score from some other distribution

Reject the null hypothesis Support for alternative . Reject the null hypothesis 95% .. Relative to this distribution I am unusual maybe even an outlier X 95% X Relative to this distribution I am utterly typical Support for alternative hypothesis

Rejecting the null hypothesis . null notnull big z score x x If the observed z falls beyond the critical z in the distribution (curve): then it is so rare, we conclude it must be from some other distribution then we reject the null hypothesis then we have support for our alternative hypothesis Alternative Hypothesis If the observed z falls within the critical z in the distribution (curve): then we know it is a common score and is likely to be part of this distribution, we conclude it must be from this distribution then we do not reject the null hypothesis then we do not have support for our alternative . null x x small z score

Rejecting the null hypothesis If the observed z falls beyond the critical z in the distribution (curve): then it is so rare, we conclude it must be from some other distribution then we reject the null hypothesis then we have support for our alternative hypothesis If the observed z falls within the critical z in the distribution (curve): then we know it is a common score and is likely to be part of this distribution, we conclude it must be from this distribution then we do not reject the null hypothesis then we do not have support for our alternative hypothesis

How do we know how rare is rare enough? Area in the tails is alpha 99% α = .01 95% α = .05 90% α = .10 How do we know how rare is rare enough? Level of significance is called alpha (α) The degree of rarity required for an observed outcome to be “weird enough” to reject the null hypothesis Which alpha level would be associated with most “weird” or rare scores? Critical z: A z score that separates common from rare outcomes and hence dictates whether the null hypothesis should be retained (same logic will hold for “critical t”) If the observed z falls beyond the critical z in the distribution (curve) then it is so rare, we conclude it must be from some other distribution

Rejecting the null hypothesis The result is “statistically significant” if: the observed statistic is larger than the critical statistic (which can be a ‘z” or “t” or “r” or “F” or x2) observed stat > critical stat If we want to reject the null, we want our t (or z or r or F or x2) to be big!! the p value is less than 0.05 (which is our alpha) p < 0.05 If we want to reject the null, we want our “p” to be small!! we reject the null hypothesis then we have support for our alternative hypothesis

Confidence Interval of 95% Has and alpha of 5% α = .05 Critical z -2.58 Critical z 2.58 Confidence Interval of 99% Has and alpha of 1% α = .01 99% Area in the tails is called alpha Critical z -1.96 Critical z 1.96 Confidence Interval of 95% Has and alpha of 5% α = .05 95% Critical Z separates rare from common scores Critical z -1.64 Critical z 1.64 Confidence Interval of 90% Has and alpha of 10% α = . 10 90%

Deciding whether or not to reject the null hypothesis. 05 versus Deciding whether or not to reject the null hypothesis .05 versus .01 alpha levels What if our observed z = 2.0? How would the critical z change? α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 -1.96 or +1.96 p < 0.05 Yes, Significant difference Reject the null Remember, reject the null if the observed z is bigger than the critical z -2.58 or +2.58 Not a Significant difference Do not Reject the null

Deciding whether or not to reject the null hypothesis. 05 versus Deciding whether or not to reject the null hypothesis .05 versus .01 alpha levels What if our observed z = 1.5? How would the critical z change? α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 -1.96 or +1.96 Do Not Reject the null Not a Significant difference Remember, reject the null if the observed z is bigger than the critical z -2.58 or +2.58 Not a Significant difference Do Not Reject the null

Deciding whether or not to reject the null hypothesis. 05 versus Deciding whether or not to reject the null hypothesis .05 versus .01 alpha levels What if our observed z = -3.9? How would the critical z change? α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 -1.96 or +1.96 p < 0.05 Yes, Significant difference Reject the null Remember, reject the null if the observed z is bigger than the critical z -2.58 or +2.58 p < 0.01 Yes, Significant difference Reject the null

Deciding whether or not to reject the null hypothesis. 05 versus Deciding whether or not to reject the null hypothesis .05 versus .01 alpha levels What if our observed z = -2.52? How would the critical z change? α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 -1.96 or +1.96 p < 0.05 Yes, Significant difference Reject the null Remember, reject the null if the observed z is bigger than the critical z -2.58 or +2.58 Not a Significant difference Do not Reject the null

One versus two tail test of significance: Comparing different critical scores (but same alpha level – e.g. alpha = 5%) 1.64 95% 5% 95% z score = -1.64 reject null 2.5% 2.5% 95% How would the critical z change? Critical scores get smaller with one tailed test 5% One tail test requires: 1. a unidirectional prediction (predict which group will have larger mean) and 2. that the results actually be in the predicted direction (predicted mean is larger) So, in a one-tailed test the “region of rejection” refers to results in the predicted direction If results are NOT in predicted direction, it is impossible to reject the null

Two tail tests One tail tests In a one-tailed test do we use a negative or positive z score? Doesn’t matter whether the z is positive or negative If prediction was right, reject the null if observed score is larger than the critical score Two tail tests But, if prediction was wrong, it is impossible to reject the null anyway One tail tests Which type of test REQUIRES that you make a prediction about which group mean will be larger? When we go from the regular two-tailed test to a one tail test, what happens to the critical z? Only the one-tail test does So, if prediction was right, it is easier to reject the null The critical score get smaller But, if prediction was wrong, it is impossible to reject the null So, if prediction was right, it is easier to reject the null But, if prediction was wrong, it is impossible to reject the null

One versus two tail test of significance 5% versus 1% alpha levels How would the critical z change? One-tailed Two-tailed α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 1% 5% 2.5% .5% .5% 2.5% -1.64 or +1.64 -1.96 or +1.96 -2.33 or +2.33 -2.58 or +2.58

One versus two tail test of significance 5% versus 1% alpha levels What if our observed z = 2.0? How would the critical z change? One-tailed Two-tailed α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 -1.64 or +1.64 -1.96 or +1.96 Remember, reject the null if the observed z is bigger than the critical z Reject the null Reject the null -2.33 or +2.33 -2.58 or +2.58 Do not Reject the null Do not Reject the null

One versus two tail test of significance 5% versus 1% alpha levels What if our observed z = 1.75? How would the critical z change? One-tailed Two-tailed α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 -1.64 or +1.64 -1.96 or +1.96 Remember, reject the null if the observed z is bigger than the critical z Do not Reject the null Reject the null -2.33 or +2.33 -2.58 or +2.58 Do not Reject the null Do not Reject the null

One versus two tail test of significance 5% versus 1% alpha levels What if our observed z = 2.45? How would the critical z change? One-tailed Two-tailed α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 -1.64 or +1.64 -1.96 or +1.96 Remember, reject the null if the observed z is bigger than the critical z Reject the null Reject the null -2.33 or +2.33 -2.58 or +2.58 Reject the null Do not Reject the null

Two tail tests One tail tests In a one-tailed test do we use a negative or positive z score? Doesn’t matter whether the z is positive or negative If prediction was right, reject the null if observed score is larger than the critical score Two tail tests But, if prediction was wrong, it is impossible to reject the null One tail tests Which type of test REQUIRES that you make a prediction about which group mean will be larger? When we go from the regular two-tailed test to a one tail test, what happens to the critical z? Only the one-tail test does So, if prediction was right, it is easier to reject the null The critical score get smaller But, if prediction was wrong, it is impossible to reject the null So, if prediction was right, it is easier to reject the null But, if prediction was wrong, it is impossible to reject the null

Thank you! See you next time!!