Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]

Slides:



Advertisements
Similar presentations
Unit Hydrographs Ch-7 (Streamflow Estimation)
Advertisements

Hydrologic Analysis Dr. Bedient CEVE 101 Fall 2013.
Unit Hydrograph The Unit Hydrograph Unit Hydrograph Derivation
Hyetographs & Hydrographs
Problem 1- Tabulated below are total rainfall intensities during each hour of a frontal storm over a drainage basin.
Estimating Qmax Using the Rational Method
Basic Hydrology: Rainfall-Runoff – I
HYDROGRAPH is a graph showing the rate of flow (discharge) versus time past a specific point in a river, or other channel or conduit carrying flow. It.
Rainfall-Runoff modeling
Modified Rational Method
Modified Rational Method for Texas Watersheds
Hydrologic Analysis (Bedient chapter 2)
TR-55 Urban Hydrology for Small Watersheds
Modified Rational Method
Using a unit hydrograph to determine storm streamflow
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Highway Drainage: Determining Flow Rates
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Time of Concentration.
Dr. Phil Bedient Rice University
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Determining Peak Flows
Find: ρc [in] from load after 2 years
Hyetographs & Hydrographs
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Presentation transcript:

Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 1,050 1,200 1,300 1,450 C 220 0.79 44.8 200 i [in/hr]= Find the peak flow rate, Q sub p, in cubic feet per second. [pause] In this problem, --- tc [min]+20 use Δt=5 [min] use multiple triangle hydrographs

Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 1,050 1,200 1,300 1,450 C 220 0.79 44.8 200 i [in/hr]= 3 watersheds, A, B and C, are adjacent to each other, and measure 120 acres, 160 acres, and 220 acres in size. tc [min]+20 use Δt=5 [min] use multiple triangle hydrographs

Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 1,050 1,200 1,300 1,450 C 220 0.79 44.8 200 i [in/hr]= The runoff coefficients and time of concentrations, for each watershed, are provided. tc [min]+20 use Δt=5 [min] use multiple triangle hydrographs

Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 1,050 1,200 1,300 1,450 C 220 0.79 44.8 200 i [in/hr]= All three watersheds discharge to a common point, and the intensity equation, for the region, is provided. tc [min]+20 use Δt=5 [min] use multiple triangle hydrographs

Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 1,050 1,200 1,300 1,450 C 220 0.79 44.8 200 i [in/hr]= Since the problem states to use multiple triangle hydrographs with a time step of 5 minutes, --- tc [min]+20 use Δt=5 [min] use multiple triangle hydrographs

Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 1,050 1,200 1,300 1,450 C 220 0.79 44.8 200 i [in/hr]= our strategy will be to determine the individual hydrographs, from each watershed, and then --- tc [min]+20 use Δt=5 [min] use multiple triangle hydrographs

Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 1,050 1,200 1,300 1,450 C 220 0.79 44.8 200 i [in/hr]= add their values together to calculate a hydrograph for all three watersheds combined. [pause] tc [min]+20 use Δt=5 [min] use multiple triangle hydrographs

Find: Qp [cfs] tp Qp shed area tc C A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 tp The two characteristics which define a synthetic triangular hydrograph are the --- Qp

Find: Qp [cfs] tp Qp shed area tc C A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 tp peak flowrate, Q sub p, and the time to peak, --- Qp peak flowrate

Find: Qp [cfs] tp Qp shed area tc C A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 time to tp t sub p. These two values define one of the three --- peak Qp peak flowrate

Find: Qp [cfs] tp Qp shed area tc C A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 tp points of the triangular hydrograph. A second point is at the origin of the hydrograph, where --- Qp

Find: Qp [cfs] tp Qp shed area tc C A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 tp time equals zero and flow equals zero. And the third point is located at flow equals zero, --- Qp

Find: Qp [cfs] tp Qp shed area tc C 2.67*tp A B C Q [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 tp time equals 2.67 times the time to peak. Often times, these two red lines are called the --- Qp 2.67*tp

Find: Qp [cfs] tp Qp shed area tc C rising limb receding limb 2.67*tp [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 tp rising limb and falling limb, or receding limb, of the hydrograph. Unless a time to peak is provided, --- rising limb Qp receding limb 2.67*tp

Find: Qp [cfs] tp = 0.67 * tc tp Qp shed area tc C rising limb [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 tp = 0.67 * tc tp it can be approximated to equal 0.67 times the time of concentration. The times of concentrations are --- rising limb Qp receding limb 2.67*tp

Find: Qp [cfs] tp = 0.67 * tc tp Qp shed area tc C rising limb [acre] [min] A 120 0.68 22.4 B 160 0.83 29.8 C 220 0.79 44.8 tp = 0.67 * tc tp plugged into the equation, and the time to peaks, for each watershed, ---- rising limb Qp receding limb 2.67*tp

Find: Qp [cfs] tp = 0.67 * tc tp Qp shed area tc tp C rising limb [acre] [min] [min] A 120 0.68 22.4 15.0 B 160 0.83 29.8 20.0 C 220 0.79 44.8 30.0 tp = 0.67 * tc tp are calculated, and rounded to the nearest minute. [pause] The peak flowrate, Q sub p, is calculated using the --- rising limb Qp receding limb 2.67*tp

Find: Qp [cfs] tp = 0.67 * tc tp Qp shed area tc tp C flowrate [acre] [min] [min] A 120 0.68 22.4 15.0 B 160 0.83 29.8 20.0 C 220 0.79 44.8 30.0 flowrate tp = 0.67 * tc tp rational method, where the peak flowrate equals the product of --- ft3 s Qp = C * i * A Qp 2.67*tp

Find: Qp [cfs] tp = 0.67 * tc tp Qp shed area tc tp C flowrate [acre] [min] [min] A 120 0.68 22.4 15.0 B 160 0.83 29.8 20.0 C 220 0.79 44.8 30.0 flowrate tp = 0.67 * tc tp the runoff coefficient, C, --- ft3 Qp = C * i * A Qp s 2.67*tp runoff coefficient

Find: Qp [cfs] tp = 0.67 * tc tp Qp shed area tc tp C flowrate [acre] [min] [min] A 120 0.68 22.4 15.0 B 160 0.83 29.8 20.0 C 220 0.79 44.8 30.0 flowrate tp = 0.67 * tc tp the intensity, i, in inches per hour, --- ft3 Qp = C * i * A Qp s in intensity 2.67*tp hr runoff coefficient

Find: Qp [cfs] tp = 0.67 * tc tp Qp shed area tc tp C area flowrate [acre] [min] [min] A 120 0.68 22.4 15.0 B 160 0.83 29.8 20.0 area C 220 0.79 44.8 30.0 [acre] flowrate tp = 0.67 * tc tp and the area, A, in acres. The problem statement provides the --- ft3 Qp = C * i * A Qp s in intensity 2.67*tp hr runoff coefficient

Find: Qp [cfs] tp = 0.67 * tc tp Qp shed area tc tp C area flowrate [acre] [min] [min] A 120 0.68 22.4 15.0 B 160 0.83 29.8 20.0 area C 220 0.79 44.8 30.0 [acre] flowrate tp = 0.67 * tc tp runoff coefficient and the area. To find the intensity, we’ll use the given --- ft3 Qp = C * i * A Qp s in intensity 2.67*tp hr runoff coefficient

Find: Qp [cfs] tp Qp shed area tc tp C 2.67*tp [acre] [min] [min] A 120 0.68 22.4 15.0 B 160 0.83 29.8 20.0 C 220 0.79 44.8 30.0 200 tp i [in/hr]= Intensity, duration, frequency curve, which relates the time of concentration to intensity, for a given return period and location. tc [min]+20 Qp 2.67*tp

Find: Qp [cfs] tp Qp shed area tc tp C 2.67*tp [acre] [min] [min] A 120 0.68 22.4 15.0 B 160 0.83 29.8 20.0 C 220 0.79 44.8 30.0 200 tp i [in/hr]= Plugging in the time of concentration, t sub c, for each watershed, the intensities calculate to be --- tc [min]+20 Qp 2.67*tp

Find: Qp [cfs] tp Qp shed area tc tp i C 2.67*tp [acre] [min] [min] [in/hr] A 120 0.68 22.4 15.0 4.72 B 160 0.83 29.8 20.0 4.02 C 220 0.79 44.8 30.0 3.09 200 tp i [in/hr]= 4.72 inches per hour, 4.02 inches per hour, and 3.09 inches per hour, respectively. Returning to Q=CiA, ---- tc [min]+20 Qp 2.67*tp

Find: Qp [cfs] tp Qp shed area tc tp i C Qp = C * i * A 2.67*tp [acre] [min] [min] [in/hr] A 120 0.68 22.4 15.0 4.72 B 160 0.83 29.8 20.0 4.02 C 220 0.79 44.8 30.0 3.09 200 tp i [in/hr]= the runoff coefficients, intensities and areas --- tc [min]+20 Qp Qp = C * i * A 2.67*tp

Find: Qp [cfs] tp Qp shed area tc tp i C Qp = C * i * A 2.67*tp [acre] [min] [min] [in/hr] A 120 0.68 22.4 15.0 4.72 B 160 0.83 29.8 20.0 4.02 C 220 0.79 44.8 30.0 3.09 200 tp i [in/hr]= are plugged into the equation, and the resulting flowrates equal --- tc [min]+20 Qp Qp = C * i * A 2.67*tp

Find: Qp [cfs] tp Qp shed area tp i Qp C Qp = C * i * A 2.67*tp [acre] [min] [in/hr] [cfs] A 120 0.68 15.0 4.72 385 B 160 0.83 20.0 4.02 534 C 220 0.79 30.0 3.09 537 200 tp i [in/hr]= 385, 534, and 537 cubic feet per second, for basins A, B and C, respectively. Lastly, we’ll want to calculate the --- tc [min]+20 Qp Qp = C * i * A 2.67*tp

Find: Qp [cfs] tp Qp shed area tp i Qp C Qp = C * i * A 2.67*tp [acre] [min] [in/hr] [cfs] A 120 0.68 15.0 4.72 385 B 160 0.83 20.0 4.02 534 C 220 0.79 30.0 3.09 537 200 tp i [in/hr]= total duration of the hydrograph, 2.67 times the time to peak. Often times this value is assigned --- tc [min]+20 Qp Qp = C * i * A 2.67*tp

Find: Qp [cfs] tp tb Qp shed area tp i Qp C Qp = C * i * A 2.67*tp [acre] [min] [in/hr] [cfs] A 120 0.68 15.0 4.72 385 B 160 0.83 20.0 4.02 534 C 220 0.79 30.0 3.09 537 200 tp i [in/hr]= the variable t sub b, for time of base. Keeping our peak flowrate, --- tb tc [min]+20 Qp Qp = C * i * A 2.67*tp

Find: Qp [cfs] tp tb Qp tb shed Qp tp 2.67*tp [min] 40.1 53.4 80.1 A B 385 533 536 15.0 20.0 30.0 tp tp time to peak, and time to base values, for each watershed, --- tb Qp 2.67*tp

Find: Qp [cfs] tb shed Qp tp Q [cfs] 600 500 400 300 200 100 t [min] 40.1 53.4 80.1 tb A B C shed [cfs] Qp 385 533 536 15.0 20.0 30.0 tp Find: Qp [cfs] Q [cfs] 600 500 400 300 the triangular hydrographs can be plotted. 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 300 200 100 t [min] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 400 300 Watershed A, will be blue, --- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 300 200 100 t [min] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 400 300 Watershed B, will be orange, --- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 300 200 100 t [min] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 400 300 and Watershed C, will be green. 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 300 200 100 t [min] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 use Δt=5 [min] 400 300 Since the problem states to use a time step of 5 minutes, we’ll need to interpolate to find the flowrate every 5 minutes. 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 300 200 100 t [min] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 use Δt=5 [min] 400 300 Using Watershed A as the example, the peak flowrate is --- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 385 500 400 300 200 100 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 385 500 use Δt=5 [min] 400 300 385 cubic feet per second, at 15 minutes, and the beginning and ending --- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 385 500 400 300 200 100 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 385 500 use Δt=5 [min] 400 300 flowrates are 0, cubic feet per second, --- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 385 500 400 308 257 300 231 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 385 500 use Δt=5 [min] 400 308 257 300 231 the remaining flowrates can all be calculated, by interpolation. This process is repeated for Watersheds B and C, --- 200 155 128 78 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 300 200 100 t [min] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 use Δt=5 [min] 400 300 and the flow rates for each time period for all hydrographs are added together. For example, --- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 300 128 200 100 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 use Δt=5 [min] 400 300 128 at 5 minutes, Watershed A generates 128 cubic feet per second, --- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 134 300 128 200 100 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 use Δt=5 [min] 400 134 300 128 Watershed B generates 134 cubic feet per second, --- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 400 134 300 128 200 100 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 use Δt=5 [min] 400 134 300 128 and Watershed C generates 90 cubic feet per second. These values sum to ---- 200 100 90 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 600 500 352 400 300 200 100 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 B 20.0 533 53.4 600 C 30.0 536 80.1 500 352 use Δt=5 [min] 400 300 352 cubic feet per second. This summation repeats for time equal to ---- 200 100 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 704 600 500 352 400 162 300 269 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 704 B 20.0 533 53.4 600 C 30.0 536 80.1 500 352 use Δt=5 [min] 400 162 300 269 10 minutes, 15 minutes, 20 minutes, and so on until no more flow. If we rescale the flow axis, --- 200 55 216 100 t [min] 109 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 1,200 800 600 400 200 t [min] 20 A 15.0 385 40.1 1,200 B 20.0 533 53.4 1200 C 30.0 536 80.1 1000 use Δt=5 [min] 800 600 The peak flow rate equals 1,200 cubic feet per second, at a time of 20 minutes. 400 200 t [min] 20 40 60 80

Find: Qp [cfs] shed tp Qp tb Q [cfs] 1,050 1,200 1,300 1,450 1,200 800 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 1,050 1,200 1,300 1,450 1,200 B 20.0 533 53.4 1200 C 30.0 536 80.1 1000 use Δt=5 [min] 800 600 When reviewing the possible solutions, --- 400 200 t [min] 20 40 60 80

Find: Qp [cfs] AnswerB shed tp Qp tb Q [cfs] 1,050 1,200 1,300 1,450 [min] [cfs] [min] Q [cfs] A 15.0 385 40.1 1,050 1,200 1,300 1,450 1,200 B 20.0 533 53.4 1200 C 30.0 536 80.1 1000 AnswerB use Δt=5 [min] 800 600 the answer is B. 400 200 t [min] 20 40 60 80

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4